Adenosine A_{2A} receptor activation enhances blood-tumor barrier permeability in a rodent glioma model

Authors
Amélie Vézina1,6, Monica Manglani2, DreeAnna Morris3, Brandon Foster4, Matthew McCord1,5, Hua Song1, Meili Zhang1, Dionne Davis1, Wei Zhang1, Jessica Bills3, Kunio Nagashima6, Priya Shankarappa7, Jessica Kindrick7, Stuart Walbridge4, Cody J. Peer7, William D. Figg7, Mark R. Gilbert1, Dorian B. McGavern2, Leslie L. Muldoon3, Sadhana Jackson1,6,*.

Affiliations
1. Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
2. Viral immunology and intravital imaging section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20892
3. Department of Neurology, Oregon Health & Sciences University, Portland, OR, USA, 97201
4. Present address: Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20892
5. Present address: Department of Pathology, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, 60611
6. Electron Microscope Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA, 21701
7. Genitourinary Malignancies Branch, Molecular Pharmacology Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892

Running title
A_{2A}R activation enhances blood-tumor barrier permeability

Keywords
Blood-tumor barrier, blood-brain barrier, adenosine receptor, glioblastoma, tight junctions, permeability
Financial support

This research was supported by the intramural program at the National Institutes of Health.

Corresponding author

Sadhana Jackson
NIH, Building 10, Room 7D45
Bethesda, MD, USA, 20892
Ph: 301-594-7037
Fax: 301-402-0380
sadhana.jackson@nih.gov

Competing interests

The authors declare no potential conflicts of interest.

Other information

Abstract: 200 words
Main text: 5617 words
Figures: 7
Abstract

The blood-tumor barrier (BTB) limits the entry of effective chemotherapeutic agents into the brain for treatment of malignant tumors like glioblastoma (GBM). Poor drug entry across the BTB allows infiltrative glioma stem cells (GSC) to evade therapy and develop treatment resistance. Regadenoson, an FDA-approved adenosine A_{2A} receptor (A_{2A}R) agonist, has been shown to increase drug delivery across the blood-brain barrier (BBB) in non-tumor bearing rodents without a defined mechanism of enhancing BTB permeability. Here, we characterize the time-dependent impact of regadenoson on brain endothelial cell interactions and paracellular transport, using mouse and rat brain endothelial cells and tumor models. In vitro, A_{2A}R activation leads to disorganization of cytoskeletal actin filaments by 30 minutes, down-regulation of junctional protein expression by 4 hours, and re-establishment of endothelial cell integrity by 8 hours. In rats bearing intracranial gliomas, regadenoson treatment results in increase of intratumoral temozolomide (TMZ) concentrations, yet no increased survival noted with combined TMZ therapy. These findings demonstrate regadenoson’s ability to induce brain endothelial structural changes amongst glioma to increase BTB permeability. The use of vasoactive mediators, like regadenoson, which transiently influences paracellular transport, should further be explored to evaluate their potential to enhance CNS treatment delivery to aggressive brain tumors.

Implications

This study provides insight on the use of a vasoactive agent to increase exposure of the blood-tumor barrier to chemotherapy with intention to improve glioma treatment efficacy.
Introduction

Drug delivery to the central nervous system (CNS) is influenced by molecular size, charge and hydrophobicity, as well as multi-drug resistant protein substrate activity. When tumor cells are present within the brain, the formidable blood-tumor barrier (BTB) greatly limits potential chemotherapeutic agents from crossing into the CNS. The BTB results from newly formed brain tumor capillaries and differs from the blood-brain barrier (BBB) by exerting a more “leaky” phenotype in certain areas.¹ The BBB is mainly formed by endothelial cells, pericytes, and astrocytic end feet allowing tight regulation of small molecules and fluid exchange between the blood and the brain.² Heterogeneous BTB permeability is mainly conferred by lack of tight junctions and astrocytic end feet in contact with endothelial cells.¹,³,⁴ Specifically, in the case of glioblastoma (GBM), the invasive potential of glioma cells and glioma stem cells (GSC) allow them to proliferate at distant sites from the tumor where the BTB resembles the more impermeable BBB. Consequently, the BTB remains a major obstacle in GBM therapy by limiting effective therapeutic agents to reach the primary tumor site and often the most invasive tumor cell infiltrating areas.¹,⁴

Disruption of the BBB at the endothelial cell level has been a common goal to increase permeability to therapeutic agents in various CNS diseases.⁵ Techniques to overcome the BTB in brain tumor therapy include osmotic disruption, focused ultrasound, convection-enhanced delivery, bolus injection of therapeutic agents directly into the tumor bed, surgically implanted chemotherapy infused biodegradable wafers, nanoparticle carriers, peptide-based delivery, and pharmacologic inhibition of efflux pumps coupled with chemotherapy.⁶ Limitations of these methods include high expense, required surgical expertise, and/or inability to provide durable responses. In contrast, the use of pharmacologic agents to transiently open the BTB is a non-
invasive technique to improve concomitant chemotherapeutic delivery with low toxicity and lower risk of secondary edema and hemorrhage. However, previous studies evaluating vasoactive mediators such as bradykinin analogs, histamine, and alkylglycerol have shown variability in drug delivery efficacy in tumor-bearing rodents and patients. About a decade ago, regadenoson, an FDA-approved adenosine A_{2A} receptor ($A_{2A}R$) agonist used for cardiac stress testing, was proven to induce cerebral vasodilation causing transient headaches in 26% of patients receiving it. This effect is thought to be secondary to high $A_{2A}R$ expression on the surface of brain endothelial cells. Regadenoson is highly selective to $A_{2A}R$ and causes rapid vasodilation with a short half-life between 2 to 4 minutes. Regadenoson is more selective to adenosine A1 receptor ($A_{1}R$) by 10-fold over $A_{2A}R$ in mice and selective only for $A_{2A}R$ in rats and humans. Previous studies showed that regadenoson dampens P-glycoprotein (P-gp) expression and decreases tight junction expression on rodent brain endothelial cells. Additionally, regadenoson increases paracellular transport of 70kD dextran and of temozolomide (TMZ), a common GBM chemotherapeutic agent, in non-tumor bearing rodents.

While GBM is the most common and lethal malignant brain tumor in adults, standard chemoradiotherapy using TMZ with surgery only provides a two-year survival rate of 26.5%. Thus, ongoing preclinical and clinical studies are focused on improving disease prognosis, with limited toxicities. A recent phase 0 clinical trial with recurrent GBM patients sought to evaluate the effect of regadenoson on TMZ intratumoral entry via brain extracellular fluid sampling. Out of five patients, two complained of headaches and testing in this subgroup demonstrated a significant increase in their intratumoral TMZ concentrations when concomitantly treated with regadenoson. The three other patients demonstrated no difference in intratumoral TMZ concentrations.
concentrations nor experienced headaches following concomitant regadenoson administration. Such interpatient differences were attributed to 1) post-operative standard of care dexamethasone co-administration, which is known to tighten the BTB and maintain its integrity and 2) proposed varied A_{2A}R activation and efflux transporter activity within tumor and healthy brain vasculature.21, 22 This variability between GBM patients led us to investigate the details of regadenoson’s impact on increasing BTB permeability for enhancement of chemotherapy delivery in glioma models.

In this study, we demonstrate the timing and mechanism of action of A_{2A}R activation by regadenoson on endothelial cell-cell junctional interactions, cytoskeletal organization, and enhanced CNS paracellular permeability in intracranially injected glioma rodent models. We establish that short-term desensitization of A_{2A}R, but not A_1R, by regadenoson results in transient rearrangement of endothelial actin cytoskeleton and disruption of cell-cell junctional proteins, allowing for altered endothelial barrier electrical integrity. We further show that regadenoson administration causes an increase in intratumoral concentrations of TMZ in rats intracranially injected with GSCs, but not in tumor-bearing mice. Yet with repeat dosing of combined regadenoson and TMZ, glioma-bearing rats did not exhibit a survival advantage. Collectively, these studies bring insight into the use of vasoactive modulators, like regadenoson, to improve efficient delivery of poorly BTB permeable agents to high-grade CNS tumors. These studies also delineate the importance of studying receptor species differences, as it relates to drug responsivity, in an effort, to optimize preclinical model use for future clinical applications.
Materials and Methods

Animals

C57BL/6J mice were purchased from Jackson Laboratory (#JAX:000664) and SCID mice (8 weeks old were obtained from Charles River (#NCI SCID/NCr, strain code: 561). Athymic nude female rats (rnu/rnu) were from an in-house colony at Oregon Health Science University (OHSU) or Envigo RMS Inc, between the size of 250-300g. The care and use of the rats were approved by the Institutional Animal Care and Use Committee (IACUC) and were under the supervision of the Department of Comparative Medicine at OHSU or the National Institutes of Health, National Institute of Neurological Disorders and Stroke. Food and water were supplied to all rats ad libitum. The mouse and rat study protocols were approved by the Animal Care and Use Committees of OHSU and the National Institutes of Health (NIH) and the use of all study animals conformed to the rules outlined in the NIH Guide for the Care and Use of Laboratory Animals. All mice and rats were housed in standard facilities and provided free access to rodent chow and water.

Cell lines

Immortalized mouse brain endothelial cells (bEnd.3, endothelial polyoma middle T antigen transformed) were obtained from American Type Culture Collection (#CRL-2299). The bEnd.3 cells were derived from a 6-week-old mouse endothelioma giving them tumor-like characteristics and making them an optimal in vitro model for studying the BTB. Cells were grown in DMEM supplemented with 10% FBS, 1% antibiotic-antimycotic (Gibco). C57BL/6 mouse primary brain microvascular endothelial cells (mBMEC) were obtained from Cell Biologics (#C57-6023). Primary mBMEC were grown in complete mouse endothelial cell
medium containing 0.5ml of each: VEGF, endothelial cell growth supplement, heparin, EGF, hydrocortisone, 5ml of each: L-glutamine, antibiotic-antimycotic solution, and 25ml FBS (#M1168-Kit). Rat brain microvascular endothelial cells (RBMEC) were obtained from Cell Applications (#R841-75a). RBMECs were grown in rat brain endothelial cell media (#R819-500). GSC cell lines, GSC923 and GSC827, were patient derived from GBM tissues surgically removed and maintained by the Neuro-Oncology Branch laboratory at National Cancer Institute (NCI) per NCI Institutional Review Board-approved protocol (NCI 02C-0140). GSCs were cultured as described previously. Briefly, cells were grown as spheroids in NBE medium consisting of Neurobasal-A medium, N2 and B27 supplements (Invitrogen), 1µg/ml basic fibroblast growth factor (bFGF), 1µg/ml EGF, and 1 mM L-Glutamine. All cells were maintained at 37°C under a humidified environment containing 5% of CO₂.

Reagents and antibodies

Mouse siRNA for transient knockdown of Adora1 (Mm_Adora1_10 FlexiTube siRNA: SI04917136) and Adora2a (Mm_Adora2a_6 FlexiTube siRNA: SI04917150; Mm_Adora2a_8 FlexiTube siRNA: SI04917164) were purchased from Qiagen. A negative control siRNA was obtained from Sigma. The medium affinity green fluorescent calcium binding dye Fluo-8 AM was purchased from Abcam. Ionomycin and cyclopiazonic acid (CPA) were kindly provided by Zayd Khaliq (National Institutes of Health). Antibodies used for immunoblotting and immunostaining are listed in Supplementary Table S1. Alexa Fluor® 488-phalloidin was purchased from Thermo Fisher Scientific (#AB12379). Regadenoson was acquired from Astellas Pharma, Cl-ENBA (A1R agonist) was from Tocris (cat. #3576), whereas CGS21680 (A2AR agonist), UK432097 (A2AR agonist), and SCH442416 (A2AR antagonist) were graciously
offered by Dr. Kenneth Jacobson (National Institutes of Health). Temozolomide was supplied from Sandoz/Novartis.

Establishment of brain endothelial cell monolayer

Prior to each experiment, bEnd.3 cells and RBMEC were grown for five days until confluence to ensure appropriate BBB phenotype. For immunofluorescence assays, bEnd.3 cells were plated on chamber slides pre-coated with 0.1mg/ml of poly-L-lysine (ScienCell) whereas RBMEC were plated on coverslips pre-coated with attachment factor solution (Cell Applications).

Calcium influx assays

Cells were incubated with Fluo-8 AM following manufacturer’s protocol. Using a Zeiss LSM 780 confocal microscope, time series images were recorded every second over 300s. Treatment was added approximately 30 seconds after recording started. Fluorescence intensity of stacked images of 20 cells per field per sample were quantified with ImageJ after removal of background fluorescence. Ionomycin and CPA were respectively used as positive and negative controls.26, 27

Total RNA isolation, cDNA synthesis, and qPCR

Cells were collected in Trizol reagent and totalRNA was extracted per manufacturer’s protocol (ThermoFisher Scientific). Complementary DNA (cDNA) was obtained by reverse transcription of 1μg of total RNA. Gene expression was quantified by qPCR using PowerUp™ SYBR® Green master mix (ThermoFisher Scientific). DNA amplification was carried out using a QuantStudio™ 7 Flex Real-Time PCR System (ThermoFisher Scientific). Primer sets were obtained from Integrated DNA Technologies and sequences are listed in Supplementary Table S2. Gene expression was measured by the difference between the mean C_T values of the target
gene and those of Gapdh (ΔCT). The relative expression was obtained by calculation of $2^{\Delta CT}$ for each sample and compared to Gapdh.

Transfection method and RNA interference

bEnd.3 cells were transfected with 10nM of siRNA against Adora1, Adora2a, a combination of Adora1 and Adora2a, or a negative control siRNA using Lipofectamine 2000 (Thermo Fisher Scientific). We have tested multiple siRNA sequences and selected the ones with highest knockdown efficiency after 24 hours of transfection. Specific gene knockdown was evaluated by qRT-PCR as described above.

Real-time endothelial barrier function measurement

Assessment of brain endothelial barrier function was carried out using the Real-Time Cell Analyzer (RTCA) Dual-Plate (DP) Instrument of the xCELLigence system (ACEA Biosciences). Forty thousand cells were seeded per well onto an E-Plate 16 (ACEA Biosciences). Cells grew in complete culture medium for 16-24 hours. Complete medium was replaced by serum-free medium and starvation occurred for 3 hours to allow stabilization of the system. Treatment was then added to the cells and impedance measurement was recorded every 2 minutes for the first two hours, and every 5 minutes until 8 hours. Values are expressed in arbitrary units as Normalized Cell Index which is defined, at a time point, as $(Z_n-Z_b)/\text{nominal } Z$; where Z_n is the cell-electrode impedance of the well when it contains cells and Z_b is the background impedance of the well with the media alone.28

Cell viability assay
Endothelial cells were seeded in a 96-well plate at 4×10^4 cells/well for 24 hours. Cells were then treated for 8 hours with increasing doses of regadenoson (0.1μM, 1μM, 10μM). Viability was measured using CellTiter-Glo® assay per manufacturer’s protocol (Promega). The luminescence was recorded by a luminometer (PolarStar Optima).

Electron microscopy

bEnd.3 cells were grown in a 6-well plate and treated with vehicle or regadenoson. Cells were washed with PBS before incubation for one hour at room temperature in electron microscopy (EM) fixative buffer containing 2% glutaraldehyde in 0.1M cacodylate buffer. Cells were dehydrated in 100% ethanol, embedded *in situ* in a pure epoxy resin, and cured in 55°C oven. The resin blocks were examined under inverted light microscope. Area of interest for thin-sectioned EM analysis were cut off by a jewelry saw and glue on a blank block. Thin sections (80nm) were made from the selected areas and mounted on 150-meshed copper grids. The grids were stained with aqueous uranyl acetate (0.5% w/v) and Reynold’s lead citrate and examined in H7650 (Hitachi) electron microscope equipped with a CCD camera (Advanced Microscopy Techniques Corp). Quantification of distance in cell gap and cell-cell junction lengths was made by measuring 100 distances of triplicates using prints of digital EM images. Distances were measured with a measuring device (American Map Corp) and converted to nanometers or micrometers.

Subcellular fractionation and immunoblotting

Proteins from whole cell lysates were obtained using RIPA lysis buffer (Santa Cruz Biotechnology) and protease inhibitor cocktail (Santa Cruz Biotechnology). Subcellular fractions were obtained using the ProteoExtract® Subcellular Proteome Extraction Kit (Millipore Sigma).
Protein samples were separated on SDS-PAGE gels and transferred to polyvinylidene difluoride (PVDF) membranes. After blocking with 5% non-fat dry milk solution in TBS/Tween-20, membranes were immunoblotted overnight with primary antibody in TBST containing 3% BSA and 0.05% NaN₃ followed by horseradish peroxidase-conjugated secondary antibody and ECL detection. Further quantification of the bands was made using ImageJ software.

Immunocytochemistry

Cells were fixed with 4% paraformaldehyde and permeabilized with 0.5% Triton X-100. After blocking unspecific binding sites with PBS containing 1% BSA, cells were incubated with primary antibody overnight at 4°C followed by incubation with secondary antibody 1 hour at room temperature. Between each step, cells were washed three times with PBS for 5 minutes. Fluorescent images were acquired with a Zeiss LSM 710 confocal microscope.

Actin cytoskeleton staining

Cells were incubated with 1U Alexa Fluor® 488-phalloidin in PBS-BSA 1% for 30 minutes at room temperature. DAPI-containing Vectashield® antifade mounting media (Vector Laboratories) and coverslips were added on the cells. Fluorescent images were acquired with a Zeiss LSM 710 confocal microscope. Quantification of fluorescence intensity was performed using ImageJ software.

Immunohistochemistry

Slices of 10-12µm thickness were obtained from fresh-frozen mouse and rat brain tissue followed by fixation and permeabilization in acetone at -20°C for 10 minutes. For mice, unspecific binding sites were blocked for 20 minutes in PBS-containing 5% normal goat serum.
Primary antibody was incubated overnight at 4°C in a humidified chamber. Tissue was then incubated 1 hour at room temperature with secondary antibody and DAPI. For rats, unspecific binding sites were blocked for 20 minutes in PBS-containing 5% normal donkey serum. Primary antibody Pecam1 (Supplementary Table S2) was incubated overnight at 4°C in a humidified chamber. Tissue was then incubated 1 hour at room temperature with secondary antibody. Subsequently, tissue was washed and blocked for 20 minutes in PBS-containing 5% normal goat serum. Primary antibody claudin-5 (Supplementary Table S2) was incubated overnight at 4°C in a humidified chamber. Tissue was then incubated 1 hour at room temperature with secondary antibody and DAPI. Coverslips were mounted on tissue with DAKO fluorescent mounting media (Agilent). Fluorescent images (z-stacks) were acquired with a Zeiss LSM 780 confocal microscope. Background fluorescence was subtracted and quantification of maximum relative fluorescence intensity and tight junction areas were analyzed with ZEN software.

Mouse brain endothelial cell isolation

The brain endothelial cell isolation method was adapted from Swanson, P.A. et al. Five C57BL/6J mice were euthanized; their brains were removed, minced, and incubated in an enzymatic solution of 0.2mg/ml Collagenase P (Sigma), 1.6mg/ml Dispase (Sigma), and 0.1mg/ml DNase (Roche) in RPMI-1640 for 10 minutes in a 37°C water bath. They were homogenized by pipetting, washed with PBS-FBS-EDTA and centrifuged. Pellets were resuspended in 35% Percoll solution and centrifuged at 1700rpm for 20 minutes to allow myelin removal. Pelleted brain cells were incubated with Fc block, IgG, and selection antibodies, CD31-PE (BioLegend) and CD45-FITC (BioLegend), as well as DRAQ5 and DAPI for live and dead cell selection. The endothelial cell population (CD31+/CD45-/DRAQ5+/DAPI-) was sorted in TRIzol and RNA was isolated using the RNEasy micro kit (QIAGEN).
Human glioma rodent model brain temozolomide concentrations

Female SCID mice were injected into the right caudate putamen (striatum) with 500,000 GSCs (GSC923 or GSC827) using a stereotactic device (coordinates, 2 mm anterior and 2 mm lateral from bregma, and 2.5 mm depth from the dura). Establishment of the tumors occurred after approximately 60 days for GSC923 and 40 days for GSC827. The mice were then randomized and treated with TMZ alone (10mg/kg, P.O.) or TMZ (10mg/kg, P.O.) and regadenoson (0.05mg/kg, tail vein injection, 30 minutes post-TMZ). Athymic nude female rats were injected into the right caudate with 1x10^6 GSC827 cells using stereotactic localization. Tumors grew around 6-7 weeks and rats were randomized and treated with TMZ alone (50 mg/kg, P.O.) or TMZ (50 mg/kg PO) and regadenoson (0.0005 mg/kg, I.V., 1 hour post-TMZ). After TMZ treatment, approximately 1 hour for mice and 2 hours for rats, blood and tissue was collected. Plasma supernatant was collected after centrifugation, then acidified with 1N HCl (10% v/v). Tissue samples (brain and tumor) were immediately flash frozen in liquid nitrogen. As previously described, TMZ concentrations in plasma, brain tissue, and tumor tissue were quantitatively measured using a validated ultra-high performance liquid chromatography-tandem mass spectrometry (uHPLC-MS/MS) assay with a lower limit of quantification (LLOQ) of 5 ng/mL for the plasma assay, and 125pg/mg for the tissue assay.18,30

Survival analysis

Male, athymic nude rats were injected into the right caudate putamen (striatum) with 1x10^6 GSC827 cells using a stereotactic device. Establishment of the tumors occurred after approximately 9 weeks and was verified through H&E staining. Five days of consecutive treatment began on week 10, in which rats were randomized into 3 treatment groups (n=5-6):
control (sterile water, P.O.), TMZ (10mg/kg, P.O.), and TMZ (10 mg/kg PO) and regadenoson (0.0005 mg/kg, I.V., 1 hour post-TMZ). Animals were then monitored for clinical endpoint criteria including hunched posture, labored breathing, impaired mobility, and 15% weight loss. Once endpoint was reached, duration of survival was noted. Brains were extracted and flash frozen in OCT for preservation before they were subsequently sliced and stained for H&E to verify tumor establishment.

Statistics

Results are reported as means ± standard error of the mean (s.e.m.) of 3 or more experimental replicates. Significant differences between groups were determined with unpaired Student t test. \(P \) values smaller than 0.05 were considered significant. Analysis was performed using GraphPad Prism software. Differences are indicated as \(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001\), and ns: not significant.
Results

Regadenoson impacts rodent brain endothelial barrier function and allows for transient disruption of cell-cell interactions

We first evaluated the levels of adenosine receptor expression in bEnd.3 cells, mouse brain microvascular endothelial cells (mBMEC), and rat brain microvascular endothelial cells (RBMEC) by qPCR. We found that they all expressed higher levels of A$_{2A}$R and A$_{2B}$R than A$_{1}$R, and almost no A$_{3}$R (Fig. 1A). We noted that bEnd.3 cells expressed higher levels of A$_{1}$R and A$_{2A}$R compared to mBMECs and RBMECs. This data corroborates previous RNA sequencing data showing very low expression of A$_{1}$R and high expression of A$_{2A}$R in mouse brain endothelial cells compared to other brain cell types.10,11 We next assessed regadenoson’s impact on endothelial cell barrier function, using the xCELLigence real-time cell analysis assay which records impedance. We observed that regadenoson decreased the bEnd.3 and RBMEC endothelial barrier cell index with an IC$_{50}$ of \sim13µM and \sim7 µM, respectively, at 30 minutes (Supplementary Fig. S1A-S1B). We observed a significant decrease in bEnd.3 and RBMEC cell index (between 35-75%) after 30 minutes of exposure to 10µM regadenoson (Fig. 1B). By approximately 3 hours, cell index increased by about 15% and slightly continued to increase until 8 hours (Fig. 1B). At 8 hours, the difference in bEnd.3 cell index was not significant between vehicle and regadenoson, suggesting transient barrier disruption with a normalization of endothelial cell-cell integrity (Fig. 1B). It appeared that regadenoson’s impact on RBMEC cell index was sustained for a longer period of time (Fig. 1B). To ensure functional changes were due to biological activity of regadenoson, we observed no change in viability of bEnd.3 cells and RBMEC over the course of 8 hours with increasing doses (Fig. 1C). Interestingly, we observed that regadenoson had no impact on mBMEC endothelial barrier when compared to vehicle.
treated cells (Fig. 1B). Therefore, we did not use mBMEC for further analysis. Furthermore, to evaluate the specificity of A$_{2A}$R activation in the modulation of endothelial barrier integrity, we observed decreased bEnd.3 cell index occurring through selective activation of A$_{2A}$R when using a specific agonist (CGS21680), compared to an A$_{1}$R agonist (Cl-ENBA) which had no impact on cell index (Supplementary Fig. S2A). Additionally, regadenoson-mediated decreased cell index was abrogated with pre-treatment of bEnd.3 cells with increasing doses of an A$_{2A}$R antagonist (SCH442416) (Supplementary Fig. S2B).

We observed on a confluent monolayer of bEnd.3 cells that 30 minutes of regadenoson exposure induced tight junction disruption as seen by breaks in electron density at the cell-cell junctions compared to vehicle control (Fig. 1D). We measured no differences in the distance between adjoining bEnd.3 cells (cell gaps) (Fig. 1E). However, we observed a decreased percentage of junctional interactions after treatment with regadenoson, which was represented as the length of electron dense material divided by the length of cell-cell membrane based on the Hubner cell-cell coverage equation (Fig. 1F). These results confirm the ability of regadenoson to rapidly and transiently modulate rodent brain endothelial cell-cell interactions.

To further understand the cellular interactions at the endothelial barrier following A$_{2A}$R activation, we investigated the expression alterations in junctional proteins. By assessing fluorescent immunocytochemistry of selected junctional proteins, we found that membrane expression of ZO-1 and VE-cadherin was disrupted by 4 hours and membrane morphology reorganized by 8 hours post regadenoson (Fig. 2A). Moreover, protein expression of claudin-5,
occludin, and VE-cadherin was significantly decreased after 4 hours of incubation with regadenoson (Fig. 2B-2C). Junctional expression was decreased by 30%, 48%, and 34% respectively (Fig. 2C). By 8 hours, overall junctional protein expression returned to baseline (Fig. 2B-2C). Similarly, we observed disrupted ZO-1 and VE-Cadherin integrity in RBMECs during the first 4 hours of treatment and membrane morphology reorganized by 8 hours post regadenoson (Fig. 2D). Furthermore, we observed an increase in cytoplasmic localization of ZO-1 and VE-Cadherin over the first 4 hours when treated with regadenoson (Fig. 2D). There was no difference in the total protein expression of junctional protein (Fig. 2E-2F). We have observed disrupted ZO-1 expression at the membrane of bEnd.3 cells when treated with regadenoson or CGS21680 but not with Cl-ENBA (Supplementary Fig. S2C). ZO-1 expression integrity was conserved when bEnd.3 cells were pre-treated with the A_{2A}R antagonist SCH442416 before incubation with regadenoson (Supplementary Fig. S2D). These results show that the impact of regadenoson on ZO-1 is dependent on A_{2A}R activation. Collectively, these findings suggest that regadenoson enhances permeability by transient post-transcriptional modulation of endothelial barrier integrity. We have identified a specific time window between 30 minutes to 4 hours during which regadenoson impacts mouse brain endothelial cell-cell interactions.

Regadenoson transiently disrupts rodent brain endothelial cytoskeleton

Downstream activation of A_{2A}R occurs through G_{αs} protein, which plays an important role in maintenance of intracellular calcium levels, as well as cytoskeletal and junctional organization. 32
Cytoskeletal reorganization has previously been linked to junctional cell-cell adhesion by directly interacting with cytosolic portions of tight and adherens junction proteins.33 Hence, we demonstrated that F-actin cytoskeleton was disorganized after 30 minutes of exposure to regadenoson (Fig. 3A-3C). Disruption of F-actin was sustained for at least 4 hours, and it completely re-assembled by 8 hours (Fig. 3A-3C). Interestingly, F-actin fluorescent intensity was decreased by regadenoson in bEnd.3 cells but not in RBMEC (Fig. 3B-3D). The cytoskeleton of bEnd.3 cells was also disorganized after 30 minutes with CGS21680 and returned to baseline organization after 4 hours, which was much faster than after regadenoson treatment (Supplementary Fig. S2E). To a lesser extent, we observed cytoskeleton disorganization with Cl-ENBA at 30 minutes, which can be attributed to the fact that agonism of GPCRs can lead to cytoskeletal modulation (Supplementary Fig. S2E).34 Additionally, pre-treatment of bEnd.3 with SCH442416 abrogated the impact of regadenoson on endothelial cytoskeleton (Supplementary Fig. S2F).

\textit{Rapid desensitization of murine A\textsubscript{2A}R by regadenoson indicates the opportunity for its use as a BBB permeability agent in a specific time-window}

A\textsubscript{2A}R is a G-protein coupled receptor (GPCR) where activation is known to lead to increased calcium influx.35 Therefore, we used a calcium influx assay to help determine the timeline of activation, desensitization, and recovery of A\textsubscript{2A}R in bEnd.3 cells with regadenoson and another A\textsubscript{2A}R selective agonist, UK432097.36 We demonstrated that regadenoson and UK432097 induced calcium influx, confirmed with both a positive control, ionomycin, and a negative control, cyclopiazonic acid (CPA) (Fig. 4A). A\textsubscript{2A}R was desensitized after short incubation of 2.5 minutes with regadenoson, as seen when bEnd.3 cells were unable to respond to UK432097 (Fig.
4B, short-term -4C). These findings correlate with the initial half-life of regadenoson that ranges between 2 to 4 minutes.37, 38 A\textsubscript{2A}R demonstrated cellular recovery by 4 hours after regadenoson administration, when stimulation with UK432097 increased calcium influx. (Fig. 4B, long-term -4C). After 4 hours, A\textsubscript{2A}R activation inducing calcium influx was still not as strong as initial activation but was significantly stronger than with only 2.5 minutes of exposure to regadenoson (Fig. 4B-4C). Binding of a ligand to A\textsubscript{2A}R activates small protein G\textsubscript{as}, which is followed by phosphorylation of the receptor and subsequent internalization via recruitment of β-arrestin to the cell membrane.39 Hence, we observed significant differences in subcellular localization of β-arrestin, increasing at the membrane and decreasing in the cytosol after 4 hours of regadenoson, compared to loading controls, calnexin and GAPDH respectively (Fig. 4D-4E). β-arrestin is typically recruited to the membrane and is known to facilitate A\textsubscript{2A}R internalization and recycling through clathrin-coated pits.39 In bEnd.3 cells, β-arrestin levels returned to baseline both in the membrane and cytosol by 8 hours, supporting recovery of A\textsubscript{2A}R with an overall transient change in the membrane:cytosol ratio (Fig. 4D-4E). Agonism of A\textsubscript{2A}R can modulate MAPK/ERK pathway to impact tight junctions.40, 41 Therefore, we have measured decreased phosphorylation of ERK and upstream effector Raf-1 after 30 minutes of regadenoson treatment in bEnd.3 cells and RBMEC (Fig. 4F- 4G). These results suggest that the timing of A\textsubscript{2A}R turnover after regadenoson activation and availability is important for downstream modulation of intracellular signaling, potentially leading to cellular integrity changes at the BBB/BBT. These findings further support that morphological changes induced by regadenoson occur through the MAPK/ERK pathway.
Regadenoson-mediated endothelial disruption occurs through an A$_2$AR dependent activation

Previous studies in mice have demonstrated the ability of regadenoson to serve as an agonist to both the inhibitory A$_1$ and stimulatory A$_2$A adenosine receptors.12 Studies show regadenoson binds specifically to A$_2$AR in rats.13 Thus, we eliminated the possibility that regadenoson may agonize A$_1$R in rats. To evaluate and confirm the selective effect of regadenoson on A$_1$R and A$_2$AR in mouse brain endothelium, we transiently transfected bEnd.3 cells with specific small interfering RNA (siRNA) sequences to knockdown Adora1, Adora2a, or both genes. We observed significant decreased Adora2a expression when siAdora2a was transfected alone or in combination with siAdora1 (Fig. 5A). We then analyzed the downstream impact of A$_2$AR agonism by regadenoson, on brain endothelial cell integrity, by knocking down Adora1 and/or Adora2a. After 30 minutes of regadenoson exposure, we observed disorganization of F-actin cytoskeletal filaments when A$_1$R was depleted, whereas we saw no change with depletion of either A$_2$AR alone or both A$_1$R and A$_2$AR (Fig. 5B-5C). Additionally, after 4 hours of regadenoson exposure, we observed disrupted cell-cell junctions when cells expressed only A$_2$AR, but no change was noted when cells were depleted in A$_1$R, A$_2$AR or both A$_1$R and A$_2$AR (Fig. 5D-5E). These results suggest that, in mouse brain endothelial cells, regadenoson’s downstream effect on junctional disruption and cytoskeleton organization occurs specifically through A$_2$AR and not A$_1$R.
Regadenoson increases intratumoral temozolomide concentrations in glioma bearing rats

To further investigate the impact of regadenoson on the BBB, we first evaluated the integrity of junctional protein expression in non-tumor bearing mouse brain. First, we observed that freshly isolated mouse brain endothelial cells express high levels of A$_2$AR (Fig. 6A). In non-tumor bearing mice, we observed a trend of decreased claudin-5 expression after regadenoson treatment, although not found to be statistically significant (Fig. 6B-6C). To assess BTB permeability, we measured TMZ concentrations in glioma bearing rodent models, comparing drug concentrations within GSCs-injected hemisphere to the normal contralateral brain hemisphere. We observed no significant difference in TMZ plasma concentration, or the ratios of brain:plasma, and tumor:plasma concentrations in mice intracranially injected with human derived glioma stem cells (GSC923 or GSC827) (Fig. 6D). Based on previous studies demonstrating a selectivity variation comparing mice with rats, we aimed to evaluate the effect of regadenoson on tumor bearing rats. While we observed no difference in brain:plasma TMZ concentrations with regadenoson co-treatment in rats intracranially injected with GSC827 tumor cells, we found a statistically significant 25.1% increase in tumor:plasma TMZ concentrations with regadenoson co-treatment compared to TMZ alone (Fig. 6E). Additionally, we found that brain:plasma concentrations in tumor bearing rats were slightly lower (~0.6-fold) when compared with historical control studies evaluating TMZ with and without regadenoson. This difference could be attributed to the presence of tumor cells, sampling time for TMZ and/or animal morbidity due to tumor cell invasion, which could impact drug delivery. Increased BTB permeability was in part attributed to decreased expression levels of claudin-5 in tumor of rats co-treated with regadenoson compared to TMZ alone and to normal contralateral brain with and
without regadenoson, normalized to Pecam1, which was not different between the samples (Fig. 6F-6G). Survival increase was observed in both treatment groups compared to control (Fig. 6H). However, concomitant treatment with Regadenoson and TMZ did not provide survival benefit compared to TMZ alone (Fig. 6H). Taken together, these glioma model results suggest a role for A2A R activation to selectively impact rat BTB and disrupt endothelial junctions resulting in increased intra-tumoral chemotherapy concentrations.

Discussion

In this study, we characterized the ability of regadenoson to transiently modulate mouse and rat brain endothelial cell morphology and render the BTB more permeable to the standard GBM chemotherapy agent, TMZ. First, these findings allowed us to define the molecular and cellular alterations occurring over a short time course following activation of A2A R by regadenoson in vitro. These steps include that i) regadenoson rapidly activates A2A R downstream signaling resulting in ii) reorganized cytoskeletal morphology starting to occur after 30 minutes, accompanied by iii) downregulation of specific tight and adherens junction proteins optimally occurring after between 30 minutes and 4 hours with suggested increased permeability of therapy agents, and that iv) all cellular morphology returns to baseline after 8 hours (Fig. 7A).

Activation of GPCRs like A2A R have been directly associated with disruption of α-actinin and F-actin interactions, impacting junctional function. Because endothelial junctional integrity is essential to the impermeability and maintenance of the BBB, understanding the timing and mechanism of how to increase BTB permeability is critical for optimizing drug delivery for aggressive brain tumors. The short half-life of regadenoson and its strong A2A R selectivity allow for rapid intracellular calcium influx, which is an important signal for relevant downstream
cytoskeleton reorganization. The transient aspect of using this treatment method represents an important feature of BTB normalization after drug delivery, facilitating a brief increase in CNS permeability while potentially avoiding supplemental prolonged neurotoxicity such as headaches, acute hemorrhage, stroke, or further neurologic decline.

Second, we established that the impact of regadenoson on cytoskeleton and junctional cell-cell interaction in mouse brain endothelial cells specifically occurs through activation of A$_{2A}$R and not A$_1$R, ruling out the hypothesis that its binding to A$_1$R could counterbalance its binding to A$_{2A}$R in the endothelium. These findings compliment previous studies suggesting that activation of either receptor leads to the opening of the BBB.17 Binding of regadenoson to both receptors suggests counteractive effects, as A$_1$R activates G$_{ai}$ leading to decreased cAMP levels and vasoconstriction, whereas A$_{2A}$R activates G$_{as}$ leading to increased cAMP levels and vasodilation.32 Furthermore, we showed very low expression of A$_1$R and high expression of A$_{2A}$R in mouse brain endothelial cells, suggesting that the effects of regadenoson on mouse brain endothelial cell-cell interactions and cell integrity depends exclusively on A$_{2A}$R. These findings were supported by Adora1 and Adora2a knockdown studies where, in mouse cells, regadenoson was unable to impact cell-cell interaction when Adora2a was knocked down but not Adora1. Also, selective antagonism of A$_{2A}$R blocked subsequent regadenoson treatment from disrupting junctional and cytoskeletal organization.

Third, we demonstrated that regadenoson enhanced TMZ concentrations in glioma rodent models. Specifically, concomitant treatment of TMZ and regadenoson led to decreased protein expression of claudin-5 specifically within the BTB of rats (Fig. 7B). However, regadenoson
failed to increase CNS drug delivery in two mouse glioma models. In determining the reason for interspecies variabilities, we propose 1) higher binding selectivity of regadenoson to A_1R in mice could potentially induce a counter effect coming from other cell types, like astrocytes and/or oligodendrocytes and 2) the presence of glioma stem cell invasion altering vascular expression and binding of A_2AR. Specifically, astrocytes express much higher levels of A_1R than endothelial cells suggesting that binding of regadenoson on A_1R in astrocytes has the potential to enhance the counteractive effect of vessel constriction, leading to failure of BTB disruption.10, 11 This would be specific to the mouse model since regadenoson is solely selective for A_2AR in rats explaining the differential results.12 Additionally, a previous study showed evidence of high expression of A_2AR in human high-grade glioma cells.47 This could potentially influence regadenoson binding on BBB/BTB endothelial cells, depending on the glioma type, grade, and receptor expression levels. While we observe increased TMZ concentration in the tumor of glioma bearing rats, we saw no survival benefit. We may attribute this to multiple factors: 1) by using 10mg/kg TMZ treatment dose for survival studies vs. 50mg/kg TMZ dose for brain:plasma concentration studies; it is unclear if a higher TMZ dosing would have positively affected survival and/or induced higher toxicity resulting in shorter model survival; 2) it is also unknown if animals develop resistance over time against regadenoson, since models survived long after drug administration; 3) regadenoson enabled higher TMZ entry at certain time points, but may have also facilitated higher TMZ exit over time. Thus, continued studies are warranted to repeat regadenoson combination dosing with other impermeable agents, explore the potential effect with higher TMZ dosing, evaluate additional human derived GSC injected models and repeat pharmacokinetic studies linked with the expression/function of multidrug resistance proteins to inhibit viable agents from reaching malignant CNS tumor tissue.
This study has some limitations to consider. We predominantly focused on mouse brain endothelial cell biology using a mouse brain endothelioma cell line in vitro, as a model of BTB integrity because of its previously published easy translatability to preclinical studies.23, 48, 49 However, the BTB is more complex in vivo and remains a serious challenge for therapy of malignant glioma.1, 50-52 Furthermore, the BTB is also comprised of astrocytes and pericytes, which exert characteristics that contribute to maintenance, integrity and impermeability of the barrier.53-55 Loss of pericyte and astrocyte coverage in the BTB alters its function, mainly at the center of GBM tumors.51 Usually, the BTB remains intact in the periphery of the tumor while being leaky to absent and non-functional in the tumor core. Thus, future studies are warranted to evaluate how regadenoson impacts astrocyte-pericyte-endothelial communication and BBB integrity in non-tumor bearing animals as well as in GBM rodent models. Moreover, while previous studies have determined that TMZ has approximately 20% brain penetration in patients, our findings showing an increase in tumor:plasma concentrations warrant evaluation of BTB impermeable agents (ex. cisplatin, doxorubicin) with regadenoson to impair GBM tumor growth and invasion.56 Additionally, because the use of a single dose of regadenoson has proven efficient to increase intratumoral concentrations TMZ in only 40% of patients, further consideration on optimization of the treatment schedule, dosing, and means of delivery is warranted.21, 57 Specifically, it has been shown that repeat A\textsubscript{2A}R activation in a short-time window increased brain delivery of the large molecule 10kD-dextran in normal brain of mice and rats.17 Another study demonstrated that regadenoson loaded nanoparticles were efficient to open the BBB in a stroke mouse model.58 Further dosing and timing studies were performed to demonstrate the usefulness of regadenoson for CNS delivery of voltage-sensitive dye for brain neuronal activity monitoring.58, 59 Additionally, a currently enrolling clinical trial is aimed at
determining the optimal regadenoson dose to transiently disrupt the BBB in high-grade glioma patients and allow for enhanced penetration of gadolinium during brain magnetic resonance imaging (MRI) (NCT03971734). MRIs with gadolinium are routinely used to measure size of space occupying lesions, such as brain tumors, with BBB compromise. This type of imaging helps neuro-oncology teams tailor the best therapy and surgery options for each patient. Therefore, this study will inform on optimal timing of concomitant therapy with a vasoactive mediator for efficient chemotherapy delivery to tumor tissue. Detailing gadolinium permeability characteristics (K_{trans}) will offer better understanding of drug entry and exit times with regadenoson. Combining the outcomes of this current clinical trial with our in vivo findings will generate additional studies that focus on the use of vasoactive mediators and/or GPCRs aimed at transiently disrupting endothelial cell integrity to improve overall treatment responses and impact disease survival.

Collectively, our data demonstrate that A_{2A}R activation can modulate brain endothelial cell-cell interactions to influence CNS drug entry, specifically in tumor areas. We established both the molecular and cellular mechanisms involved in endothelial permeability after A_{2A}R activation by regadenoson; leading to enhanced BTB permeability in glioma-bearing rats. Altogether, we provide a model that can be useful in studying the timing and impact of other pro-permeability agents on brain endothelium, as they relate to CNS drug delivery.
Acknowledgments

The authors thank the National Cancer Institute Confocal Microscopy Core for the use of their microscopes and expertise, Drs. James Anderson and Christina van Itallie for their expertise and advice on junctional evaluation, Dr. Kenneth Jacobson for its expertise and technical advice on adenosine receptors, and Dr. Zayd Khaliq for his technical advice on calcium influx analysis. We thank Erina He (NIH medical illustration department) for assistance with crafting summary schema.
Author Contributions

A.V., M.Ma., M.R.G., D.B.M., B.F. S.W., S.J. designed the project. A.V., M.Ma., C.J.P.,
L.L.M., D.B.M., S.J. developed the methodology. A.V., M.Ma., M.Mc., H.S., M.Z., D.D., W.Z.,
D.M., J.B., K.N., P.S., J.K., B.F., S.W. C.J.P. performed experiments and acquired data. A.V.,
M.Ma., C.J.P., D.B.M., S.J. analyzed and interpreted data. A.V., S.J. wrote the manuscript and
all authors contributed, reviewed and approved the manuscript.
Uncategorized References

32

Figure 1.

Regadenoson rapidly and transiently disrupts rodent brain endothelial cell-cell interaction. **A,** Relative gene expression of adenosine receptors in bEnd.3 cells, mBMEC, and RBMEC. Data are shown with mean ± s.e.m. for 3 experimental samples. **B, top:** Representative endothelial monolayer functional assay of bEnd.3 cells, mBMEC, and RBMEC treated with vehicle or regadenoson using the xCELLigence system. Cell impedance was recorded every 2 minutes and reported as normalized cell index representing changes in cell-cell adhesion; **bottom:** Quantification of drop in cell index over time after treatment with vehicle or regadenoson for 3
or more experiments. Data are represented as mean ± s.e.m. *P < 0.05, **P < 0.01 by Student’s t-test. C, Viability of bEnd.3 cells, mBMEC, and RBMEC treated with increasing doses of regadenoson for 8 hours. Data are represented as mean ± s.e.m. for 3 experimental samples. D, Representative electron microscopy images of cell-cell junctions in bEnd.3 cells treated with vehicle or regadenoson for 4 hours. Less electron dense regions (arrows) represent disrupted cell-cell junctions. E, Quantification of cell gap, representing distance between cells at junctions. F, Schematic representation of cell-cell junctions percentage calculations, modified from Hübner, K. et al. 2018. G, Quantification of percentage of cell-cell junctions, representing the overall length during which the cells are tightly adjoined. Data are represented as mean ± s.e.m. of 3 independent experiments. ***P < 0.001 by Student’s t-test. All regadenoson treatments were at 10μM except where indicated in panel C.

Figure 2.

Regadenoson transiently disrupts rodent brain endothelial cell junctional integrity. A, Representative immunocytochemistry images of tight junction protein ZO-1, and adherens junction protein VE-cadherin in bEnd.3 cells treated with vehicle or regadenoson for 0.5, 4 or 8 hours. Zoomed insets show the morphological aspect of cell junctions and membrane organization. B, Representative immunoblots of tight junction proteins: claudin-5, occludin, and adherens junction protein: VE-cadherin in bEnd.3 cells treated with vehicle or regadenoson for 0.5, 4 or 8 hours. C, Quantification of junctional protein expression presented in B. Data are represented as mean ± s.e.m. of 3 or more experiments. *P < 0.05, **P < 0.01 by Student’s t-test. D, Representative immunocytochemistry images of tight junction protein ZO-1, and adherens junction protein VE-cadherin in RBMEC treated with vehicle or regadenoson for 0.5, 4 or 8 hours. Zoomed insets show the morphological aspect of cell junctions and membrane organization. E, Representative immunoblots of tight junction proteins: claudin-5, occludin, and adherens junction protein: VE-cadherin in RBMEC treated with vehicle or regadenoson for 0.5, 4 or 8 hours. F, Quantification of junctional protein expression presented in E. Data are represented as mean ± s.e.m. of 3 experiments. *P < 0.05 by Student’s t-test. All regadenoson treatment was at 10µM.

Figure 3.

Regadenoson transiently disrupt mouse brain endothelial cytoskeleton. A, Representative immunocytochemistry images of F-actin cytoskeleton filaments in bEnd.3 cells treated with vehicle or regadenoson for 0.5, 4 or 8 hours. Insets are enlarged representation of cytoskeletal morphology. B, Quantification of F-actin. Values are presented as normalized fluorescence intensity of ±5 fields per sample of 3 independent experiments. **P < 0.01 by Student’s t-test. C, Representative immunocytochemistry images of F-actin cytoskeleton filaments in RBMEC
treated with vehicle or regadenoson for 0.5, 4 or 8 hours. Insets are enlarged representation of cytoskeletal morphology. D, Quantification of F-actin. Values are presented as normalized fluorescence intensity of 3-5 fields per sample of 3 independent experiments. All regadenoson treatment was at 10µM.

Figure 4

Regadenoson induces rapid A$_{2A}$R downstream signaling. A, Representative calcium influx in bEnd.3 cells following ionomycin, regadenoson, UK432097 or CPA treatment. B, Representative calcium influx following UK432097 activation of bEnd.3 cells pre-treated with regadenoson for 2.5 minutes (short-term) or 240 minutes (long-term). C, Quantification of calcium influx peaks following UK432097 treatment with and without regadenoson pre-treatment. Data are represented as mean ± s.e.m. ****$P < 0.0001$ by Student’s t-test. A, B, C, Values are presented as normalized fluorescence intensity for 20 cells per field of 3 or more experiments. D, Immunoblots of β-arrestin in subcellular fractions of bEnd.3 cells treated with vehicle or regadenoson for 0.5, 4 and 8 hours. Calnexin and GAPDH were used as loading control antibodies for membrane fraction and cytosolic fraction respectively. M: membrane, C: cytosol. E, Quantification of membrane-to-cytosol ratios of β-arrestin represented as mean ± s.e.m. of 3 independent experiments. **$P < 0.01$ by Student’s t-test. F, Representative immunoblots of phospho-ERK, ERK, phospho-Raf-1, and Raf-1 in bEnd.3 cells and RBMEC treated with vehicle or regadenoson for 0.5, 4 or 8 hours. G, Quantification of protein expression. Data are represented as mean ± s.e.m. of 3 experiments. *$P < 0.05$, ***$P < 0.001$ by Student’s t-test. Drug dosages were as follows: regadenoson 10µM, UK432097 100nM, ionomycin 1µM, CPA 100µM.

Figure 5.

Regadenoson mediated endothelial disruption occurs through an A$_{2A}$R dependent activation. A, Validation and efficacy of Adora1 and Adora2a gene knockdown. Normalized gene expression over GAPDH. Data are represented as mean ± s.e.m. of 5 experiments. *$P < 0.05$, **$P < 0.01$ by Student’s t-test. B, Representative immunocytochemistry images of F-actin filaments staining in bEnd.3 cells knocked down for Adora1 and/or Adora2a and treated with vehicle or regadenoson for 30 minutes. Insets are enlarged representation of cytoskeletal morphology. C, Quantification of F-actin. Values are presented as normalized fluorescence intensity of 5 fields per sample of 3 independent experiments. ****$P < 0.0001$, **$P < 0.01$ by Student’s t-test. D, Representative immunocytochemistry images of tight junction protein ZO-1 in bEnd.3 cells knocked down for Adora1 and/or Adora2a and treated with vehicle or regadenoson for 4 hours. Zoomed insets is the morphological aspect of cell junctions and membrane organization. E, Representative immunocytochemistry images of VE-cadherin in bEnd.3 cells knocked down for Adora1 and/or
Adora2a and treated with vehicle or regadenoson for 4 hours. Zoomed insets is the morphological aspect of cell junctions and membrane organization. All regadenoson treatment was at 10µM.

Figure 6.
Regadenoson increases intratumoral TMZ concentrations in glioma bearing rats but not mice. **A,** Relative expression of adenosine receptors in freshly isolated mouse brain endothelial cells. Data are represented as mean ± s.e.m. N=4. **B,** Representative immunohistochemistry images of Claudin-5 and Pecam1 in non-tumor bearing mice treated with vehicle or regadenoson for 30 minutes. **C,** Quantification of relative fluorescence intensity of the area occupied by Claudin-5 over Pecam1. Data are represented as mean ± s.e.m. n=6 mice/group. **D,** Brain:plasma and tumor:plasma TMZ concentrations, given alone or 30 minutes prior to regadenoson in SCID mice injected with glioma stem cell lines (GSC923 or GSC827). Data are represented as mean ± s.e.m., n=3-8 mice/group. **E,** Brain:plasma and tumor:plasma ratios of TMZ concentrations, given alone or 1 hour prior to regadenoson in rats with GSC827 intracerebral xenografts. Data are represented as mean (s.d.), n=5 rats/group. **F,** Representative immunohistochemistry images of Claudin-5 and Pecam1 in normal contralateral brain and GSC827 tumor tissue of rat treated with TMZ alone or TMZ with regadenoson. **G,** Quantification of relative fluorescence intensity of the area occupied by Claudin-5 over Pecam1. Data are represented as mean ± s.e.m. n=3-5 rats/group. **H,** Kaplan-Meier survival curves for treatment groups (control, TMZ alone, TMZ + regadenoson). Mice were given regadenoson 0.05mg/kg (tail vein injection) and TMZ 10mg/kg (oral administration); rats were given regadenoson 0.0005mg/kg (tail vein injection), TMZ 50mg/kg (oral administration) for PK analysis and TMZ 10mg/kg for survival.

Figure 7.
Transient disruption of the blood-tumor barrier with regadenoson leads to increase permeability to temozolomide in glioma bearing rats. **A,** Schematic timeline representation of *in vitro* A2AR activation on mouse endothelial cells by regadenoson leading to transient junctional disruption. **0h:** Binding of regadenoson to A2AR activates G_{αs} and subsequently results in calcium influx. **0.5h:** Desensitization of A2AR and cytoskeleton disorganization occurs after 0.5 hours. **4h:** Increase of β-arrestin levels at the membrane suggests internalization of A2AR, along with disruption of cell-cell junctional interaction. **8h:** Cytoskeleton organization and junctional interaction re-establishes after 8 hours. **B,** Left: Poorly permeable BTB characterized by normal levels of claudin-5 and normal entry of TMZ to the tumor. **Right:** Enhanced permeability amongst the BTB with regadenoson administration, characterized by decreased claudin-5 expression, represented by increased TMZ within tumor tissue.
Figure 1

A

Relative gene expression

\[\text{bEnd.3} \quad \text{mBMEC} \quad \text{RBMEC} \]

\(A_1R \quad A_2A \quad A_2B \quad A_3R \)

B

Normalized cell index (% of treatment time, a.u.)

\[\text{bEnd.3; vehicle} \quad \text{bEnd.3; regadenoson} \quad \text{mBMEC; vehicle} \quad \text{mBMEC; regadenoson} \quad \text{RBMEC; vehicle} \quad \text{RBMEC; regadenoson} \]

C

Cell viability (%)

\[\text{bEnd.3} \quad \text{mBMEC} \quad \text{RBMEC} \]

Regadenoson (μM)

0 0.1 1 10

D

[Images of tissue samples under different conditions: vehicle and regadenoson]

E

Distance in cell gap (nm)

\[\text{Vehicle} \quad \text{Reg} \]

F

Cell-cell junctions length (%)

\[\text{Vehicle} \quad \text{Reg} \]

Downloaded from mcr.aacrjournals.org on September 28, 2021. © 2021 American Association for Cancer Research.
Figure 2

A

<table>
<thead>
<tr>
<th></th>
<th>0.5h</th>
<th>4h</th>
<th>8h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZO-1, DAPI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regadenoson</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>0</th>
<th>0.5</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>regadenoson</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>claudin-5</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>occludin</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>VE-cadherin</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>GAPDH</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

C

Protein expression (x-fold over vehicle)

Vehicle Regadenoson

Claudin-5

D

<table>
<thead>
<tr>
<th></th>
<th>0.5h</th>
<th>4h</th>
<th>8h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZO-1, DAPI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regadenoson</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>0</th>
<th>0.5</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>regadenoson</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>claudin-5</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>occludin</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>VE-cadherin</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>GAPDH</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

F

Protein expression (x-fold over vehicle)

Vehicle Regadenoson

Claudin-5

Occludin

VE-cadherin
Figure 3

A

Ctrl | Vehicle | Regadenoson

F-actin, DAPI

| 0.5h | 4h | 8h |

B

Vehicle | Regadenoson

Normalized fluorescence intensity (F-actin/nuclei, a.u.)

| Time (Hours) |

0 | 0.5 | 4 | 8

ns

C

Ctrl | Vehicle | Regadenoson

F-actin, DAPI

| 0.5h | 4h | 8h |

D

Vehicle | Regadenoson

Normalized fluorescence intensity (F-actin/nuclei, a.u.)

| Time (Hours) |

0 | 0.5 | 4 | 8
Figure 4

A

Normalized calcium influx (x-fold over 0s)

Time (s)

0 60 120 180 240

ionomycin
Regadenoson
UK432097
CPA

B

Short-term

Normalized calcium influx (x-fold over 0s)

Time (s)

0 60 120 180 240

Tx
Reg
UK432097

Long-term

Pre-Tx, Reg 4hrs

Normalized calcium influx (x-fold over 0s)

Time (s)

0 60 120 180 240

UK432097

C

Peak of calcium influx

Time (minutes)

0 2.5 240

D

0h
0.5h
4h
8h

M
C
M
C
M
C
M
C

Regadenoson
β-arrestin
Calnexin
GAPDH

E

Ratio of β-arrestin localization

(membrane/cytosol)

0 0.5 4 8

vehicle
regadenoson

F

Time (hours)

0 0.5 4 8

regadenoson

bEnd.3

RBMEC

p-ERK
ERK

p-ERK
ERK

p-Raf-1
Raf-1

p-Raf-1
Raf-1

G

bEnd.3

RBMEC

p-ERK/ERK

(x-fold over vehicle)

Time (hours)

0 2 4 6 8

p-ERK/ERK

(x-fold over vehicle)

Time (hours)

0 2 4 6 8

p-Raf-1/Raf-1

(x-fold over vehicle)

Time (hours)

0 2 4 6 8

p-Raf-1/Raf-1

(x-fold over vehicle)

Time (hours)
Figure 7

A

Time 0h: A2AR activation and calcium influx

Time 0.5h: Cytoskeleton disorganization

Time 4h: Decreased cell-cell junctional interaction and A2AR internalization

Time 8h: Junctional and cytoskeletal reorganization

B

Astrocytic end feet

Pericyte

TMZ

Glioma stem cells
Molecular Cancer Research

Adenosine A2A receptor activation enhances blood-tumor barrier permeability in a rodent glioma model

Amelie Vezina, Monica Manglani, DreeAnna Morris, et al.

Mol Cancer Res Published OnlineFirst September 14, 2021.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/1541-7786.MCR-19-0995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author Manuscript</td>
<td>Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://mcr.aacrjournals.org/content/early/2021/09/14/1541-7786.MCR-19-0995. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>