Aurora Kinase A Promotes AR Degradation via the E3 Ligase CHIP
Sukumar Sarkar, David L. Brautigan, and James M. Larner

Abstract
Reducing the levels of the androgen receptor (AR) is one of the most viable approaches to combat castration-resistant prostate cancer. Previously, we observed that proteasomal-dependent degradation of AR in response to 2-methoxyestradiol (2-ME) depends primarily on the E3 ligase C-terminus of HSP70-interacting protein (STUB1/CHIP). Here, 2-ME stimulation activates CHIP by phosphorylation via Aurora kinase A (AURKA). Aurora A kinase inhibitors and RNAi knockdown of Aurora A transcript selectively blocked CHIP phosphorylation and AR degradation. Aurora A kinase is activated by 2-ME in the S-phase as well as during mitosis, and phosphorylates CHIP at S273. Prostate cancer cells expressing an S273A mutant of CHIP have attenuated AR degradation upon 2-ME treatment compared with cells expressing wild-type CHIP, supporting the idea that CHIP phosphorylation by Aurora A activates its E3 ligase activity for the AR. These results reveal a novel 2-ME–Aurora A–CHIP–AR pathway that promotes AR degradation via the proteasome that may offer novel therapeu tic opportunities for prostate cancer.

Introduction
The development, treatment, and recurrence of prostate cancer all depend on the androgen receptor (AR). Tumors that develop resistance to androgen ablation therapy, called castration-resistant prostate cancer, retain AR that transmits proliferation and survival signals independent of androgens (1–3). Under these circumstances, reduced expression of the AR would be potentially beneficial. Therefore, we have undertaken studies to discover ways to increase degradation of the AR to lower its levels in prostate cancer cells.

We previously reported that treatment of human prostate cancer cell lines with 2-methoxyestradiol (2-ME) increased proteasomal degradation of the AR and that this response depended on the C-terminus of Hsp70-interacting protein (CHIMP; ref. 4). CHIP interacts with Hsp70 and Hsp90 while mediating the ubiquitination and degradation of various chaperone-associated client proteins (5, 6). Thus, CHIP acts as a link between the chaperone system and the 26S proteasome system to maintain protein homeostasis in the cytoplasm (7, 8).

CHIP has been shown to be a regulator of oncogenic pathways such as those involved in tumorigenesis, proliferation, and invasion in several malignancies, particularly breast cancer (8). CHIP has been implicated in carcinogenesis via its regulation of a number of proteins including the receptor tyrosine kinase ErbB2, hypoxia-inducible factor 1α (HIF1α), human telomerase reverse transcriptase, Src-3, NF-κB, and c-Myc (9–12), as well as tumor suppressors such as p53, apoptosis-inducing factor 1 (AIF1), and IFN regulatory factor 1 (IRF-1; refs. 13, 14). Recent reports have established that CHIP also promotes degradation of the glucocorticoid receptor and the cystic fibrosis transmembrane conductance regulator (6, 15).

The activity of CHIP is regulated by interactions with chaperones and cochaperones to shift the triage of client proteins toward either folding or degradation (10). CHIP is regulated both transcriptionally and posttranscriptionally. The mRNA levels of CHIP are upregulated in heat shock, overexpression of pathogenic forms of polyQ proteins, and oxidative stress conditions (16, 17). Both mRNA and protein levels of CHIP are upregulated in breast (9, 18), colorectal (14, 19), and gastric cancers (20), and CHIP expression strongly correlates with poor prognosis. It has also been reported that miR-764-5p downregulates CHIP in osteoblast differentiation (21).

A plethora of evidence establishes that CHIP function is regulated through posttranslational modifications. One such modification is regulatory ubiquitination, which facilitates targeting of CHIP substrates for proteasomal degradation (7). A recent report has shown that ataxin-3, a deubiquitinase, associates with mono-ubiquitinated (at Lys 2) CHIP and provides a chain-editing activity, which determines the dynamics of substrate ubiquitination by CHIP. Ataxin-3 presumably binds polyubiquitinated substrates through its ubiquitin-interacting domain and deubiquitinates CHIP to terminate the reaction (22). Furthermore, CHIP is phosphorylated on serine and threonine residues in both its N- and C-terminal regions (23). However, how phosphorylation alters CHIP function is unknown. The kinases that are responsible for CHIP phosphorylation have not been identified, except for ERK5 that associates with CHIP and increases ubiquitin ligase activity, perhaps due to conformational changes in CHIP (24). Here, we show Aurora A is activated upon 2-ME treatment of prostate cancer cells, LNCaP, C4-2, 22RV1, and LAPC4. Inhibition

1Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia. 2Center for Cell Signaling, Department of Microbiology, Immunology & Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia.

Note: Supplementary data for this article are available at Molecular Cancer Research Online (http://mcr.aacrjournals.org/).

Corresponding Author: James M. Larner, Department of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908. Phone: 434-924-5564; Fax: 434-243-9789; E-mail: jml2p@virginia.edu
doi: 10.1158/1541-7786.MCR-17-0062
©2017 American Association for Cancer Research.
of Aurora A kinase either by pharmacologic inhibitors or by knockdown using siRNA prevented 2-ME–induced CHIP phosphorylation and AR degradation. Aurora A phosphorylates CHIP at S273, and substitution of alanine for serine at this site (S273A) in CHIP attenuated 2-ME–induced AR degradation in cells.

Materials and Methods

Cell culture
Androgen-dependent human prostate carcinoma, LNCaP, and androgen-independent human prostate carcinoma C4-2 and 22Rv1 (freshly sourced from ATCC) were maintained in RPMI (Gibco-Life Technologies), Los Angeles prostate cancer 4, LAPC4 (a kind gift from Dr. Daniel Gioeli, Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA) were maintained in iMDM supplemented with 10% FBS and 1% penicillin/streptomycin. Cell lines were maintained at 37°C under 5% CO2 and 1% penicillin/streptomycin. Cells were harvested after 24 hours unless otherwise mentioned.

RNA isolation and RT-PCR
Cells were treated with different doses of 2-ME for 24 hours or treated with siRNA against Aurora C, and total RNA was isolated using TRIzol reagent (Invitrogen-Life Technologies) according to the manufacturer’s instructions. Complementary DNA synthesis for mRNA detection was carried out using the SuperScript III first-strand synthesis system for RT-PCR (Invitrogen). mRNA was detected by qPCR using SYBR Green PCR Master Mix (Bio-Rad) in a Bio-Rad CFX96 cycler and quantified with Bio-Rad CFX manager software (Bio-Rad).

siRNA transfection
siRNA was transfected into LNCaP or C4-2 cells using RNAiMAX (Invitrogen) as per the manufacturer’s protocol. Briefly, 2 × 106 cells were seeded in 6-cm dish in growth medium. Following day, transfection complex (siRNA + RNAiMax) was added to the cells after washing once with PBS, waiting for 4 to 6 hours, and then transfection complex was removed, cells were washed twice with PBS, and growth medium was restored. Drugs were added and cells were harvested after 24 hours unless otherwise mentioned. siRNAs used are Aurora A-5′-CAGAGGAGAAGAGAGAAUA-3′; Aurora B–5′-GGCAAGAIAAGAUAAGCA-3′; Aurora C–5′-CGGAGAAALILAGGAAGACA-3′; CHIP-3′-UTR–5′-CCACUACUICUGUAUAAUA-3′; TPX2–5′-CCAAAGAAGAUGCCAGG-3′; CDK1–5′-GGAUCAACCUUICAGAUCU-3′; CDK2–5′-GGACGAGGAGCCUCUGGCG-3′; PDK1–5′-GAGCAGAGGCAAAAGGUAU-3′ and 5′-GGACGAGGAGGAGCCGUAU-3′; PLK1–5′-GACCGAGGAGGCGGCGG-3′; GAPDH from Cell Signaling Technology; cyclin B1 (CC03, Calbiochem), and mouse monoclonal anti-tubulin antibody from Sigma-Aldrich.

FACS analysis
Cells were harvested by trypsinization and fixed with 70% ethanol for 24 hours at 4°C. Fixed cells were stained in 1 mL of propidium iodide solution (0.05% NP-40, 50 mg/mL propidium iodide, and 10 mg/mL RNase A) for at least 2 hours at room temperature or overnight at 4°C. Stained cells were analyzed with a flow cytometer using CellQuest software (both from BD Biosciences); cell-cycle phases were analyzed by ModFit LT V3.3.11 (Mac, Verity Software House).

Point mutation
Serine to alanine or aspartic acid mutation of CHIP at S273 was carried out using QuickChange Site-Directed Mutagenesis Kit as per the manufacturer’s instructions (Stratagene).

Immunoprecipitation and Aurora A kinase assays
FLAG-CHIP was immunoprecipitated from cell extracts using anti-FLAG-M2 beads (Sigma-Aldrich). The beads were washed three times with lysis buffer and twice with kinase buffer (20 mmol/L Tris-HCL, pH 7.4, 1 mmol/L MgCl2, 25 mmol/L KCL, 1 mmol/L DTT, and 40 μg/mL BSA). The beads were then incubated with 19 μL of kinase reaction mixture (20 mmol/L Tris-HCL, pH 7.4, 1 mmol/L MgCl2, 25 mmol/L KCL, 1 mmol/L DTT and 40 μg/mL BSA, 100 μmol/L ATP, 5 μCi of [γ-32P]ATP) and 1 μL of purified recombinant Aurora A (purchased from Millipore) at 30°C for 30 minutes. The reaction was stopped by the addition of 4 μL of 6 × SDS sample buffer. Samples were resolved by SDS-PAGE, and the gel was stained with Coo massie brilliant blue and dried before autoradiography.

Mass spectrometry analysis
LNCaP cells stably expressing FLAG-WT-CHIP were treated with or without 1 μmol/L 2-ME for 24 hours. FLAG-CHIP was affinity purified using anti-FLAG M2 beads and eluted with FLAG peptide. Elutes were separated by SDS-PAGE, stained with Coo massie brilliant blue, and protein bands were excised. LC/MS-MS was performed using a Thermo Fisher Scientific Orbitrap Velos ETD spectrometer in the Biomedical Mass Spectrometry Laboratory, which is supported by the University of Virginia School of Medicine (Charlottesville, VA). Data were analyzed using Sequest algorithm.

Results
Effects of kinase inhibitors on AR degradation in prostate cancer cells
We had previously observed substantial reduction in the levels of AR protein when we treated LNCaP or C4-2 prostate cancer cells with 2-ME. This was due to proteasomal degradation that correlated with covalent modification of CHIP, based on its reduced electrophoretic mobility in SDS-PAGE (4). If cell extracts were described, 30 μg of total protein was resolved by SDS-PAGE, transferred to filters, and immunoblotted with various antibodies (1:1,000 dilution unless otherwise mentioned). The antibodies used were antiAR (sc-7305); antiTPX2; Cdk1 (17) and Cdk2 (D-12) all from Santa Cruz Biotechnology; anti-CHIP (C386), anti-Aurora A, anti-pT288-Aurora A, anti-Aurora B, and anti-GAPDH from Cell Signaling Technology; cyclin B1 (CC03, Calbiochem), and mouse monoclonal anti-tubulin antibody from Sigma-Aldrich.

Western blotting and antibodies
For Western blotting, cells were lysed in modified RIPA lysis buffer (50 mmol/L Tris-HCl, 150 mmol/L NaCl, 5 mmol/L EDTA, 5 mmol/L EGTA, 0.5% NP-40, 0.5% Triton X-100, 50 mmol/L NaF, 2 mmol/L sodium orthovanadate, 40 mmol/L β-glycerophosphate, and 1 μmol/L microcystin) supplemented with a protease inhibitor mix (Thermo Fisher Scientific). Unless otherwise
treated with lambda phosphatase, this slower migrating form of CHIP was eliminated and the faster migrating form appeared, indicating that CHIP was phosphorylated in response to 2-ME treatment of the cells (data not shown). Previous reports have shown CHIP phosphorylation in response to paclitaxel (Taxol) in different cell lines, including prostate cancer cells (PhosphoSite Plus.org). To determine which kinases are involved in the CHIP response to 2-ME, we assayed a panel of commercially available kinase inhibitors in LNCaP and C4-2 cells with or without the addition of 2-ME (Supplementary Table S1). Inhibition of MEK1/2, p38 MAPK, PKA, or PKC did not prevent CHIP phosphorylation nor attenuate AR degradation upon 2-ME treatment. We observed similar results with inhibitors of PI3K family members mTOR, ATM, or DNA-PK (Supplementary Table S1). On the other hand, the PI3K inhibitors LY294002 and Wortmannin blocked both CHIP phosphorylation and AR degradation in response to 2-ME treatment. Because PI3K is upstream of PDK1 and Akt, we expected to mimic the effects of PI3K inhibitors by knockdown of PDK1 or Akt using specific siRNAs. To our surprise, CHIP was phosphorylated and AR degraded in response to 2-ME in LNCaP and C4-2 cells knocked down for PDK1 and Akt. In addition, inhibition of Akt using MK-2206 did not affect the responses to 2-ME. We speculate that inhibition of CHIP phosphorylation and attenuation of AR degradation by LY294002 and Wortmannin were off-target effects, or at least effects not dependent on PI3K/PDK1/Akt kinases (25, 26).

Aurora kinase A is required for AR degradation in response to 2-ME

Cells treated with 2-ME for 24 hours undergo mitotic arrest (4); therefore, the effects on CHIP and AR could be dependent on kinases that are activated when cells are in mitosis. We tested whether inhibition of mitotic kinases would block responses to 2-ME. To this end, we treated LNCaP and C4-2 cells with inhibitors of Aurora A/B kinases in the presence or absence of 2-ME. Both MLN-8054 and VX-680 inhibited Aurora A activation (phosphorylation of Thr288) and CHIP phosphorylation, as well as AR degradation in response to 2-ME (Fig. 1A and B). MLN-8054 and VX-680 attenuated degradation of both full-length as well as truncated (AR-V7) forms of AR in 22RV1 cells (Fig. 1C). We observed similar results as seen in Fig. 1A and B in LAPC4 cells (Fig. 1D). In contrast, inhibition of Aurora B

Figure 1. Aurora A kinase inhibitors attenuate 2-ME-induced AR degradation. A–D, LNCaP and C4-2 (A and B), 22RV1 (C), and LAPC4 cells (D) were treated with or without 2-ME in the presence or absence of Aurora A kinase inhibitors MLN8054 and/or VX-680 for 24 hours. Cells were harvested, lysed, and extracts were immunoblotted for indicated proteins. Tubulin served as loading control.
with ZM447439, or Polo-like kinase (PLK) by BI6727 or by siRNA knockdown in LNCaP and C4-2 cells, did not prevent phosphorylation of CHIP (Supplementary Table S1). We observed a slight reduction of AR degradation in the presence of 2-ME when we inhibited Aurora B with ZM447439 or knocked down Aurora B or Aurora C by siRNA (see below).

To compare the relative contributions of Aurora A, B, and C, we knocked them down individually or in combinations in LNCaP (Fig. 2A) and C4-2 (Fig. 2B) cells. Knockdown of Aurora A spared most of the AR from degradation upon 2-ME treatment. We observed partial protection of AR upon knockdown of Aurora B and slight preservation of AR upon knockdown of Aurora C. We did not observe any additive effects on AR levels when we knocked down combinations of Aurora A with either Aurora B or Aurora C. On the other hand, knockdown of Aurora B and Aurora C together did little to prevent AR degradation. The phosphorylation of CHIP (seen as reduced mobility in SDS-PAGE) was eliminated in cells knocked down for Aurora A alone, or combinations that included Aurora A, but not in cells knocked down for Aurora B or Aurora C (Fig. 2A and B). This reinforced the idea that Aurora A was phosphorylating CHIP. Furthermore, knockdown of Aurora A, but not Aurora B or Aurora C, prevented phosphorylation of CHIP and 2-ME–mediated AR degradation in cells stably expressing wild-type (WT) FLAG-tagged CHIP (Supplementary Fig. S1). We concluded that 2-ME stimulation of CHIP phosphorylation and AR degradation required Aurora A but not other kinases tested.

Figure 2. Knockdown of Aurora A attenuates 2-ME–induced AR degradation. A and B, LNCaP (A) or C4-2 cells (B) were knocked down for Aurora A, B, or C individually or in combination, treated with or without 2-ME, harvested, and extracts were immunblotted for AR, CHIP, Aurora A, Aurora B, and GAPDH as a control. Remaining amounts of AR presented as a ratio of the band intensity of 2-ME treated versus corresponding DMSO-treated cells, LNCaP (top right) and C4-2 (bottom right). Mean ± SD of at least three independent experiments. C, Due to lack of availability of an effective antibody against Aurora C, knockdown was monitored by qRT-PCR. mRNA levels are shown in LNCaP and C4-2 cells.
2-ME activates Aurora A kinase in a dose- and time-dependent manner

We treated LNCaP or C4-2 cells with increasing doses of 2-ME (Fig. 3A). At doses above 0.5 μmol/L, there was near complete loss of AR protein and an increase in CHIP phosphorylation. We also noted a large increase in the protein levels of Aurora A in both cell lines in response to 2-ME, compared with untreated cells. This increase in Aurora A protein corresponded to an increase of >10-fold in mRNA levels of Aurora A in response to 2-ME treatments (Fig. 3B). The phosphorylation of Thr288 (indicative of Aurora A kinase activation) increased in parallel to the increase in Aurora A protein level. The phosphorylation of CHIP and degradation of AR correlated closely with Aurora A upregulation and activation.

We next examined the kinetics of the response to 2-ME (Fig. 3C). LNCaP and C4-2 cells were treated with 2 μmol/L 2-ME or DMSO as vehicle control and harvested at different time points for Western blotting. AR degradation and CHIP phosphorylation were obvious at 6, 12, and 24 hours in both cell lines treated with 2-ME (lanes 8, 10, 12). Aurora A protein upregulation and Thr288 phosphorylation in 2-ME–treated cells increased progressively from 6 through 24 hours. Aurora A upregulation could be detected as early as 3 hours in C4-2 cells (lane 6) and even earlier (lane 4) in LNCaP cells. These results showed that 2-ME elicited upregulation and activation of Aurora A that corresponded to CHIP phosphorylation and AR degradation.

2-ME activates Aurora A kinase in the S-phase of the cell cycle

Prolonged treatment with higher doses of 2-ME induces mitotic arrest in LNCaP and C4-2 prostate cancer cells (4). These M-phase cells also have higher levels of cyclin B1 compared with untreated cells.
cells (Fig. 4A). To determine whether Aurora A kinase is activated by 2-ME without mitotic arrest, we treated prostate cancer cells for 24 hours with aphidicolin, an inhibitor of the replicative DNA polymerase. Cells were then treated with or without 2-ME for an additional 24 hours in the presence of aphidicolin. In the presence or absence of 2-ME, aphidicolin arrested cells at G1–S, as determined by DNA content using FACS analysis (Fig. 4B, left). The Aurora A protein levels were not increased in these cells, nor were the levels of cyclin B1, consistent with the cells not being in mitosis. However, Aurora A was activated by 2-ME in the S-phase cells, based on phosphorylation of Thr288. Activation of the Aurora A by 2-ME corresponded with severe reduction in the levels of AR protein. These results show that Aurora A can be activated by 2-ME in cells that are not in the M-phase. Perhaps more importantly, AR degradation is stimulated by 2-ME outside of mitosis, reducing the possibility that mitotic kinases other than Aurora A are involved in this response.

Phosphorylation of CHIP by Aurora A requires TPX2

TPX2 is a protein that binds to and activates Aurora A (27). We knocked down TPX2 in LNCaP and C4-2 cells using siRNA and treated the cells with and without 2-ME for 24 hours. Preknockdown, TPX2 protein levels were increased robustly in response to 2-ME treatment, and this corresponded to a large increase in activation (i.e., phosphorylation of Thr288) of Aurora A (Fig. 5A, lanes 2 and 6). Knockdown of TPX2 essentially eliminated phosphorylation of Aurora A in response to 2-ME. In addition, without TPX2, CHIP was not phosphorylated and AR escaped degradation. Thus, TPX2 and Aurora A were both required for these responses. Cells arrested in the S-phase expressed about the same levels of TPX2 as unsynchronized cells (Fig. 5B). Under these conditions, activation of Aurora A by 2-ME did not involve TPX2 upregulation. Presumably there was a sufficient level of TPX2 without upregulation to support activation of Aurora A. These results further support the hypothesis that 2-ME activates Aurora A/TPX2, which in turn phosphorylates CHIP, leading to enhanced AR degradation.

CHIP phosphorylation and AR degradation are independent of CDKs

We produced LNCaP cells stably expressing FLAG-CHIP and treated them with or without 2-ME for 24 hours. FLAG-CHIP was recovered from cell extracts on anti-FLAG beads and eluted with FLAG peptide, and the tryptic peptides were analyzed for phosphorylation by LC/MS-MS. Analysis of the relative recovery of the phospho- and dephospho-peptides revealed that the peptide with pSer273 was enriched 12- to 15-fold in 2-ME–treated cells compared with untreated cells (Table 1). In addition, there was phosphorylation of Ser19 in both treated and untreated cells, and 2-fold induction of the doubly phosphorylated peptide with pSer19 and pSer23, with a corresponding decrease in the amount of singly phosphorylated peptide. Thus, addition of 2-ME to living cells increased phosphorylation of CHIP predominantly at Ser273.
Phosphorylation of CHIP at Ser19, Ser23, and Ser273 seems incompatible with direct phosphorylation by Aurora A because these serine residues all are adjacent to prolines, and Aurora A does not phosphorylate Ser-Pro in peptides (28). In fact, phosphorylation of Ser-Pro has not been observed among known Aurora substrates in cells (29). Instead, Ser-Pro is known to be a consensus site for phosphorylation by cyclin-dependent kinases (CDK). A recent article reported that Cdk5 phosphorylates CHIP at a site. We treated cells expressing FLAG-tagged WT CHIP with or without 1 μM 2-ME for 24 hours, conditions where the Aurora A phosphorylation site(s) would become occupied in the WT protein. This was indeed the case, based on anti-FLAG immunoblotting that showed reduced mobility of FLAG-CHIP in 2-ME–treated versus untreated cells (Fig. 6A, lanes 1 vs. 2). We expressed FLAG-tagged WT and S273A CHIP, recovered the proteins using anti-FLAG beads, and performed an in vitro kinase assay with purified recombinant Aurora A and [γ-32P]ATP. The WT FLAG–CHIP recovered from untreated cells was 32P-phosphorylated by Aurora A (Fig. 6B, lane 2), but there was no phosphorylation of WT FLAG–CHIP recovered from 2-ME–treated cells (Fig. 6B, lane 3). This demonstrated that the Aurora A phosphorylation site in FLAG–CHIP was occupied in 2-ME–treated cells. Purified Aurora A also failed to phosphorylate FLAG–CHIP S273A (Fig. 6B, lane 4), consistent with our mapping of this as the primary phosphosite in 2-ME–treated cells. These results demonstrated that Ser273 was the site of Aurora A phosphorylation in CHIP in cells treated with 2-ME.

CHIP S273A mutation attenuates 2-ME–induced AR degradation
To address the role of CHIP Ser273 phosphorylation in AR degradation, we depleted endogenous CHIP using siRNA against the 3′-UTR of CHIP in cells stably expressing empty vector or untagged WT, S273A, or S273D versions of CHIP and treated these cells with or without 2-ME for 24 hours. As shown in Fig. 7A, knockdown of endogenous CHIP reduced the extent of AR degradation induced by 2-ME (lane 4 vs. 2). This degradation was restored in cells expressing WT CHIP (lane 6), whereas cells expressing CHIP S273A exhibited less AR degradation in response to 2-ME compared with cells expressing WT CHIP (lane 8 vs. 6). CHIP Ser273 was substituted with Asp as a phosphomimetic residue, and this S273D version was compared with WT and S273A. The quantitative amount of AR remaining after 2-ME stimulation (even numbered lanes in panel A) from at least three independent experiments is shown in Fig. 7B, revealing statistically significant less AR degradation with knockdown of CHIP or substitution of Ser273. These data support the conclusion that CHIP phosphorylation at Ser273 enhances AR degradation.

Discussion
AR signaling is critical for the progression of prostate cancer, so understanding the pathways that promote AR degradation is one step toward combating castration-resistant prostate cancer. We report here that Aurora kinase A phosphorylates CHIP and promotes AR degradation in LNCaP, C4-2, 22RV1, and LAPC4 prostate cancer cells upon 2-ME treatment. We suggest this novel

Table 1. Analysis of CHIP phosphorylation upon 2-ME treatment of prostate cancer cells

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Phosphosite</th>
<th>2-ME/DMSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGAGGPsPKSAPQELKEQGNR</td>
<td>S19</td>
<td>−2X</td>
</tr>
<tr>
<td>LGAGGPsPKSAPQELKEQGNR</td>
<td>S19 and S23</td>
<td>+4X</td>
</tr>
<tr>
<td>VGHFPVTPRPGLQELIPNLAMK</td>
<td>S273</td>
<td>+12X to +15X</td>
</tr>
</tbody>
</table>

NOTE: Fold change of CHIP phosphorylation upon 2-ME treatment of LNCaP cells stably expressing FLAG-WT-CHIP.
Aurora A kinase is known to regulate mitotic entry, spindle formation, and centrosome maturation. Experimental overexpression of Aurora A overrides the mitotic spindle checkpoint and induces resistance to paclitaxel (32). Several early studies have shown that Aurora A is overexpressed in various malignancies, including prostate cancer (33, 34). These facts in part prompted development of Aurora A kinase inhibitors as anticancer drugs. Aurora A is activated at mitotic entry, and this suggests AR degradation might depend on 2-ME induction of mitosis. However, we found that 2-ME activates Aurora A and AR degradation in both S and G2–M phases of the cell cycle, so the actions of 2-ME cannot simply be attributed to cells being arrested in mitosis. A noncanonical role for Aurora A in DNA replication has been reported (35, 36), consistent with our observation of Aurora A activation in aphidicolin-arrested cells. The activation of Aurora A in response to 2-ME can be explained in part by the increase of Aurora A mRNA levels. Binding of TPX2 to Aurora A stabilizes an active kinase conformation and prevents Thr288 dephosphorylation (37). We discovered Aurora A activation and CHIP-mediated AR degradation are both TPX2 dependent in mitosis. TPX2 is also present in nonmitotic cells, but it is unknown whether interphase activation of Aurora A is TPX2 dependent. Inducing 2-ME synthesis or accumulation would be predicted to activate Aurora A and cause degradation of AR.

In mammals, Aurora A, B, and C possess distinctive roles, Aurora A phosphorylates multiple substrates and promotes mitotic entry by activation of cyclin B1/Cdk1 (38, 39) and activation of PLK1 (40, 41). Aurora B provides the catalytic activity to the chromosome passenger complex (42), and Aurora C is required for spermatogenesis and oocyte development (43). We observed an attenuation of 2-ME-induced AR degradation when we knocked down Aurora B, even though CHIP was still phosphorylated. However, simultaneous knockdown of Aurora B and C was unable to restore 2-ME-induced AR degradation, suggesting that 2-ME promoted CHIP phosphorylation and AR degradation primarily, if not exclusively, via activated Aurora A.

Our mass spectrometry results revealed that 2-ME treatment increased the phosphorylation of CHIP at Ser273 by 12- to 15-fold. Ser273 is followed by proline in a consensus sequence (S/T)PX[K/R] for CDKs (44). However, inhibitors and knockdowns indicated that CDKs are not responsible for CHIP Ser273 phosphorylation or AR degradation. Because the S273A mutation prevented in vitro phosphorylation of CHIP by Aurora A and attenuated 2-ME-induced AR degradation in cells, we conclude that phosphorylation of Ser273 in CHIP stimulates AR degradation.

Figure 6. Aurora A phosphorylates CHIP at S273. A, Cells stably expressing FLAG-WT-CHIP were treated with or without 2-ME for 24 hours, harvested, and immunoblotted using anti-FLAG antibody (top). Immunoblotting for tubulin serves as loading control (bottom). B, FLAG-WT-CHIP and FLAG-CHIP S273A were pulled down with M2 beads and used as substrates in kinase assays performed using bacterially expressed recombinant purified Aurora A and radiolabeled γ-ATP. Top, autoradiogram of 32P incorporated into FLAG-CHIP. Coomassie brilliant blue (CBB) staining of gel shows protein bands.

Figure 7. S273A substitution in CHIP attenuates 2-ME-induced AR degradation. A, C4-2 cells stably expressing empty vector, WT CHIP, or CHIP S273 mutants were depleted of endogenous CHIP using siRNA against 3′-UTR, and treated with or without 2-ME for 24 hours, then harvested and immunoblotted for AR, CHIP, and tubulin as a control. B, Quantification of remaining AR expressed as a ratio of the band intensity of 2-ME-treated versus corresponding DMSO-treated cells. The fold change was calculated relative to AR level in 2-ME-treated control cells stably expressing empty vector. Mean ± SD of at least three independent experiments. Statistical significance presented as: ns = not significant; *, P < 0.05; **, P < 0.001; and ****, P < 0.0001.
degradation. The most straightforward possibility is that Aurora A directly phosphorylates Ser273 in CHIP. However, Aurora A has a well-defined consensus sequence that does not match the Ser273 site with an adjacent Pro residue. It is conceivable that an unknown Aurora A–dependent kinase phosphorylates Ser273 in CHIP in 2-ME–treated cells. Such a kinase would have to coprecipitate with CHIP or contaminate purified recombinant Aurora A that were used in kinase assays. Then again, Aurora A itself may be responsible. CHIP functions in a multiprotein complex with chaperones that might render the conformation of the S273 site reactive with Aurora A. We cannot rule out the possibility that Aurora A also enhances AR degradation through direct phosphorylation of AR. Aurora A was reported to phosphorylate AR at T282 and S293 and activate transcription, but no decrease in AR levels in response to Aurora A phosphorylation was noted. Complicating the issue, that article was subsequently retracted (PMID 27825092). Thus, we cannot exclude the possibility that Aurora A might activate AR degradation by phosphorylation of both enzyme subunits. CHIP, and AR respectively.

A recent report has shown that a complex of PC-1, an androgen-responsive transcription factor, and CHIP degrade the AR in mitosis (45). Whether 2-ME–mediated AR degradation involves PC-1 is unknown. However, the interphase activation of Aurora would be expected to be PC-1 independent. AR function is cell cycle dependent, and S308 phosphorylation by Cdk1 regulates its localization and transcriptional activity (46). In addition, phosphorylation of CHIP at Ser20 by Cdk5 promotes TAF1-mediated neuronal death (30). These observations raise the question of whether phosphorylation of CHIP or AR by Cdk5 may contribute to AR degradation. However, our results eliminate Cdk involvement in 2-ME–induced CHIP phosphorylation, for both treatment with rocsovitine, which inhibits Cdk1, Cdk2, and Cdk5, and simultaneous knockdown of Cdk1 and Cdk2 failed to prevent 2-ME–induced CHIP phosphorylation and AR degradation.

We raise three potentially important therapeutic implications regarding activation of Aurora in the promotion of AR degradation. First, any chemotherapeutic regimen, including microtubule-disrupting agents, should promote AR degradation by arresting cells in mitosis when Aurora A is activated. Docetaxel is highly active in castrate-resistant prostate cancer, and we suggest some of its activity could be explained by Aurora A–mediated AR degradation. Second, if Aurora A levels are rate limiting in promoting AR degradation, then Aurora A levels could be a potential biomarker for response to Aurora-activating agents. Third, agents that inhibit Aurora activity would be expected to increase AR levels and signaling, thereby promoting prostate cancer growth. Aurora A inhibitors have been tested in clinical trials since 2005. At least 70 trials of such inhibitors have been initiated in different cancers. We suggest these agents (33, 47–50), including MLN8054 and VX-680, might have unintended adverse effects in prostate cancer due to protection of AR from degradation.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: S. Sarkar, D.L. Brautigan, J.M. Larner
Development of methodology: S. Sarkar, J.M. Larner
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Sarkar
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Sarkar, D.L. Brautigan, J.M. Larner
Writing, review, and/or revision of the manuscript: S. Sarkar, D.L. Brautigan, J.M. Larner
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Sarkar
Study supervision: S. Sarkar, D.L. Brautigan, J.M. Larner

Acknowledgments
The authors thank Dr. Cam Patterson, New York Presbyterian Hospital/Weill Cornell Medical Center, New York, for providing us wild-type CHIP construct.

Grant Support
This work was supported by grant NIH-CA192669 and the generous support of Charles Burnett III.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 3, 2017; revised April 28, 2017; accepted May 17, 2017; published OnlineFirst May 23, 2017.

References

