Evolution of Dermatofibrosarcoma protuberans (DFSP) to DFSP-derived fibrosarcoma (FS-DFSP): an event marked by epithelial mesenchymal transition-like process and 22q loss

Authors: Stacchiotti S¹, Astolfi A²*, Gronchi A³, Fontana A³, Pantaleo MA⁴, Negri T⁵, Brenca M⁶, Tazzari M⁷, Urbini M², Indio V², Colombo C³, Radaelli S³, Brich S⁵, Dei Tos AP⁸, Casali PG¹, Castelli C⁷, Dagrada GP⁵, Pilotti S⁵*, Maestro R⁶*

*These authors equally contributed to this paper

1. Adult Mesenchymal Tumour and Rare Cancer Medical Oncology Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale Tumori Milan, Italy
2. Centro Interdipartimentale di Ricerche sul Cancro G. Prodi, Università di Bologna, Bologna, Italy
3. Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
4. Dipartimento di Medicina Sperimentale, Specialistica e Diagnostica, Università di Bologna, Bologna, Italy
5. Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
6. Unit of Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano, Italy
7. Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
8. Department of Anatomic Pathology, General Hospital of Treviso, Treviso, Italy

Presented at ASCO Annual Meeting, 2015, Chicago, abstract 10554

Correspondence to: dr. S. Stacchiotti, MD, phone +390223902803; fax +390223902404; Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan Italy; e-mail: silvia.stacchiotti@istitutotumori.mi.it

Disclosure
Stacchiotti S, Pantaleo MA: Novartis, research founding
Gronchi A, Dei Tos AP: Novartis, compensated advisory board, honoraria
Casali PG: Novartis, compensated advisory board, honoraria, research founding

Running title: Dermatofibrosarcoma protuberans (DFSP) and fibrosarcomatous DFSP
ABSTRACT

Dermatofibrosarcoma protuberans (DFSP) is a rare and indolent cutaneous sarcoma. At times a fibrosarcomatous transformation marked by a more aggressive clinical behavior may be present. We investigated the natural history and the molecular bases of progression from classic DFSP to the fibrosarcomatous form (FS-DFSP) looking, retrospectively, at the outcome of all patients affected by primary DFSP treated at our institution from 1993 to 2012, and analyzing the molecular profile of 5 DFSP and 5 FS-DFSP by an integrated genomics approach (whole transcriptome sequencing, copy number analysis, FISH, qRT-PCR, immunohistochemistry). The presence of fibrosarcomatous features was identified in 20 (7.6%) patients out of 263 DFSP. All cases were treated with macroscopic complete surgery. A local relapse occurred in 4/23 patients who received a microscopic marginal surgery (2 classic DFSP, 2 FS-DFSP) while metastasis affected 2 patients, both FS-DFSP (10% of FS-DFSP), being the first event. DFSP evolution to FS-DFSP was paralleled by a transcriptional reprogramming. The recurrent loss of chromosome 22q appeared to contribute to this phenomenon, by promoting the expression of epigenetic regulators such as EZH2. Loss of the p16/CDKN2A/INK4A locus at 9p was also observed in two FS-DFSP metastatic cases.

Implications: FS-DFSP is a rare subgroup among DFSP, with a 10% metastatic risk, that was independent from local recurrence and that was not observed in DFSP, that were all cured by wide surgery. Chromosome 22q deletion might play a role in FS-DFSP, and p16 loss may convey a poor outcome. EZH2 dysregulation was also found and represent a druggable target.
INTRODUCTION

Dermatofibrosarcoma protuberans is a rare cutaneous sarcoma known for its indolent course, its tendency to recur mostly at the site of the primary tumor and its high cure-rate when it can be completely resected1,2,3. The superficial location and the very low metastatic potential of classic dermatofibrosarcoma protuberans (hereafter called DFSP) may justify a less aggressive surgical approach as compared to what applied to soft tissue sarcomas (STS). However, a fibrosarcomatous (FS) transformation may occur in 5–15\% of DFSP, and fibrosarcomatous dermatofibrosarcoma protuberans (hereafter referred to as FS-DFSP) is associated to an increased risk of metastases, in the range of 10–15\%4,5.

In most cases the presence of FS features can be detected in the primary tumor, but in some patients it is identified only on the relapsed tumor4,5. Data on the proportion of patients who experience a FS evolution from a pure DFSP are scanty.

DFSP and FS-DFSP are characterized by the reciprocal chromosome translocation t(17;22)(q22;q13.1) or, more often, supernumerary ring chromosome or markers derived from t(17;22), in which the collagen type Iα1 gene (COL1A1) on chromosome 17 is fused to the platelet-derived growth factor β-chain gene (PDGFB) on chromosome 22. The resulting upregulation of the PDGFB protein activates the PDGFB receptor (PDGFRB), inducing tumor growth through an autocrine-paracrine loop4,6,7.

COL1A1-PDGFB rearrangement is of major help in confirming the diagnosis in those cases in which the classic component is completely lost6,8. COL1A1-PDGFB retention in FS-DFSP suggests that other still undetermined genetic abnormalities account for progression of DFSP to FS-DFSP.

Therefore, we investigated the natural history of DFSP evolution to FS-DFSP in patients presenting to the Fondazione IRCCS Istituto Nazionale dei Tumori in Milan (INT) with a primary lesion, from 1993 to 2012. In addition, we molecularly profiled a set of DFSP and FS-DFSP by a combined approach including whole transcriptome sequencing, copy number analysis, FISH, qRT-PCR and immunohistochemical (IHC) investigations, in order to gain insights into the molecular bases of FS progression and to identify possible prognostic factors and druggable targets.
PATIENTS AND METHODS

All consecutive patients affected by primary DFSP, located at any site, treated at INT from January 1993 to December 2012 were considered, including only patients admitted for primary DFSP, either for initial treatment or re-excision after a previous inadequate surgery performed elsewhere. Patients with recurrent disease, defined as tumor regrowth at the original tumor site at least 6 months after treatment at another institution, were excluded. Data were extracted from a prospectively maintained database including all adult patients with STS treated at INT.

In all cases, diagnosis was confirmed by an expert pathologist (SP). All surgical excisions were macroscopically complete and classified according to the closest surgical margin, which was microscopically categorized as positive (tumor within 1 mm from the inked surface, R1) or negative (absence of tumor within 1 mm from the inked surface, R0). Before surgery all patients underwent staging with chest X-ray or computed tomography (CT) scan.

After surgery, all patients were followed-up every 6 months for the first 5 years and then every year for, at least, 5 more years. Generally, FU included a clinical exam, local ultrasound or MR, along with a chest X-ray or chest CT every other visit. Last FU was defined as a patient’s last recorded visit at INT at the time of data collection. Local recurrence (LR) and distant metastasis (DM) were confirmed with a biopsy in all cases.

Overall survival (OS), crude incidence of LR and DM were evaluated. Events were considered the first evidence of local or distant relapse for crude cumulative incidence (CCI) of LR or CCI of DM and death related to any cause for OS. Event times were computed from the date of surgery to the date of the event occurrence.

To gain insights into mechanisms involved in FS progression, tumor samples from 5 patients suffering from DFSP and 5 patients with FS-DFSP were collected for molecular profiling. Peripheral blood sample collection from each patient included in the translational study was also planned upfront in case the assessment of somatic/germline status of putative mutation(s) had to be determined. These cases were selected based on the availability of frozen samples and peripheral blood and did not belong to the surgical series, having been operated on after 2012.
This retrospective study was approved by the Ethics Committee of INT.

Pathology, immunophenotyping and fluorescence in situ hybridization (FISH) analysis

FS change was defined by the appearance in a classical storiform DFSP of at least 5% of high cellular area made up of spindle cells arranged in an herringbone pattern with a mitotic index >7/10 high power fields (HPF); necrosis, pleomorphic features, myofibroblastic differentiation were also recorded and considered in making FS-DFSP diagnosis, as well as decrease/disappearance of CD34 immunoreactivity. Notably, in the present series, with the exception of case D6 in table 2 which presented both components, FS change accounted for more than 90%.

Immunohistochemistry (IHC) was performed using antibodies directed against the following proteins: Ki-67, INI1, TWIST1, SNAI2/SLUG, ZEB1, EZH2, p16. Detailed antibody information and staining conditions are provided in Suppl. Information 1.

FISH analyses were performed on 2 µm thick Formalin-Fixed Paraffin-Embedded (FFPE) tissue sections by using the indicated BAC probes (Children Hospital Research Institute, Oakland, CA, USA). *PDGFB*: RP11-630N12 at the telomeric end and RP11-506F7 at centromeric end; *COL1A1*: RP11-131M15 at the telomeric end and RP11-93L18 at centromeric end. BACs were labelled in Spectrum Green (SG) or Spectrum Orange (SO) (Abbott Molecular) by nick translation (Abbott Molecular, Abbott Park, Illinois, USA). Probe labelling and FISH slide preparation were carried out according to standard protocols. The presence of the rearrangement was revealed by using either SG labelled *COL1A1* BAC probes together with SO labelled *PDGFB* probes (*COL1A1-PDGFB* fusion) or differentially labelled (centromeric in SO, telomeric in SG) *PDGFB* probes (*PDGFB* break apart).

CDKN2A/p16 gene status was assessed by FISH on 2 µm thick FFPE tissue sections using the Vysis LSI *CDKN2A/CEP 9* (Abbott Molecular).

Whole transcriptome sequencing (RNA-seq)
Detailed methodological procedures are provided in Suppl. Information 1. Briefly, whole-transcriptome sequencing (RNA-seq) was performed on RNA isolated from fresh-frozen samples of 5 DFSP and 5 FS-DFSP using the TruSeq RNA Sample Prep v2 protocol (Illumina, San Diego, California, USA). An average of 94.5 million reads per sample were obtained.

The short reads were mapped on the human reference genome by TopHat/Bowtie pipeline. Large chromosomal rearrangements were detected with DeFuse, ChimeraScan and FusionMap tools. For gene expression profile, after the calculation of normalization factors to scale the raw library size (calcNormFactors method), the functions lmFit followed by eBayes were adopted to perform the DE computation. Unsupervised Principal Component Analysis was performed with TM4-MEV (http://www.tm4.org) and visualized with the R package lattice.

Gene enrichment and prioritization were analyzed by using ToppGene, GSEA, Webgestalt and PGE suites.

SNP array and copy number analysis

Genomic DNA was extracted with QiaAmp DNA mini kit (Qiagen, Milano, Italy), labeled and hybridized to Cytoscan HD Arrays (Affymetrix, Santa Clara, CA, USA) following manufacturer's instructions. Quality was checked by SNP QC and MAPD calculation. Copy number analysis was performed with Chromosome Analysis Suite (ChAS) Software, by applying Hidden Markov Model algorithm to detect amplified and deleted segments, with respect to a normal reference model file. To control for hyper-fragmentation, adjacent segments separated by <50 probes were combined into one single segment, and only segments >50 probes were considered.

qRT-PCR analysis

Expression analysis of EZH2, HOTAIR, H19, Let-7a and Let-7b was performed by quantitative real-time PCR (qRT-PCR) on a CFX96 Real-Time Apparatus (Bio-Rad, Milano, Italy). All experiments were performed in triplicate and repeated at least twice. Detailed methodological procedures are provided in Suppl. Information 1.
RESULTS

Clinical findings

Two-hundred and sixty-three patients were identified. Two-hundred and forty-three (92.4%) patients were affected by DFSP and 20 (7.6%) by FS-DFSP. Main patient characteristics are listed in Table 1. COL1A1–PDGFB fusion gene was confirmed by FISH in 18/20 FS-DFSP cases, while in 2/20 cases FISH analysis was not performed due to lack of material.

The 2 groups of patients shared similar clinical characteristics. Microscopic surgical margins were positive in 23 (8.8%), 21/243 (8.6%) DFSP and 2/20 (10%) FS-DFSP respectively. Among patients with positive surgical margins, 13 cases (56.5%) had the tumor located in the head and neck, 5 in the trunk (2 of them at sternoclavicular area, partially involving the neck), 5 in the extremities (1 involved the foot and 2 the groin/urogenital area).

Patients outcome

Median FU from time of definitive surgery was 85 (range 12-194) months. At the time of the present analysis, 261/263 patients are alive, 2/263 are dead for other diseases. None of the patients is dead of disease and 2 patients are alive with metastatic disease.

Overall, 5/10/15-year OS were 99/99/93%, respectively.

LR occurred in 4 patients (1.5%), being in all the first event, following a R1 resection of the primary tumor in all 4 cases. Local relapse occurred in 2/21 (9.5%) DFSP and in 2/2 (100%) FS-DFSP operated on with positive microscopic margins, . None of these patients subsequently developed DM. The other 18 patients operated on with positive margins remained disease free at a median FU of 96 months after surgery (range 19-147).

Two patients affected by FS-DFSP developed DM (0.76% of the whole series; 10% of FS-DFSP), while none of the patients affected by DFSP ever developed metastatic disease. The 5-, 10-, 15-year incidence of DM was 0/0/0% and 5/10/10% in DFSP and FS-DFSP respectively. In all cases DM was the first event. Metastases were located to the lung (1) and to the pancreas (1). DM
occurred after 26 and 125 months. The presence of the fusion gene (COL1A1-PDGFB) in the metastatic tissue was confirmed in all cases.

Molecular profiling of DFSP evolution

Tumors and peripheral blood from 10 patients suffering from DFSP (5) and FS-DFSP (5), operated on at INT after 2012, were collected. The characteristics of the tissue samples molecularly evaluated are summarized in Table 2 and in Suppl. Table 1. In particular, they were all derived from different patients (no pair matched samples are included), from the primary tumor in 6 cases, local relapse in 2 and distant metastasis in 2. All cases but one were histologically homogeneous throughout the tumor sample; one case (D6, Table 2) exhibited instead both classic and FS components (Fig. 1). At frozen section control, performed in all the cases, sampling of this case felt in the DFSP area.

FISH confirmed the presence of COL1A1-PDGFB in all cases. High levels of COL1A1-PDGFB fusion copy number/amplification was observed in 3 cases: 2 FS-DFSP (D2, D4) and one DFSP (D6). No strong evidence of intratumoral heterogeneity for the fusion was observed, with the exception of the cases showing COL1A1-PDGFB amplification.

Whole transcriptome sequencing reveals a role for extracellular matrix remodeling and EMT in FS evolution

The gene expression profile was computed from whole transcriptome data and compared between the 5 DFSP and 5 FS-DFSP tumors. Unsupervised Principal Component Analysis (PCA) of gene expression data showed that the DFSP group had a transcriptome profile highly homogenous. A considerable degree of heterogeneity was instead observed among FS-DFSP, with one case (D3/L168) clustering with DFSP (Suppl. Fig. 1). Gene expression analysis identified 439 differentially expressed transcripts, with 174 upregulated and 265 downregulated genes in FS-DFSP compared to DFSP (Log2 fold change greater than +0.6) (Suppl. Table 2).
Pathway analysis (Suppl. Table 2) highlighted an enrichment in GO-biological process terms related to extracellular matrix (ECM) organization, extracellular structure organization, cell migration, collagen fibril organization, locomotion and collagen metabolic process, beside morphogenesis, neuro and vasculo-genesis and cell proliferation. These analyses also pinpointed to a role for ECM and ECM–receptor interaction. Highly overrepresented Reactome terms included extracellular matrix organization and collagen formation, and ECM-receptor interaction was the top list term in KEGG pathways. Pathway analysis failed to underscore a significant involvement of an adaptive immune response in FS evolution.

Twenty-nine genes differentially expressed in FS-DFSP vs DFSP belonged to the “epithelial-mesenchymal transition hallmark gene signature”, according to the GSEA Hallmark gene sets (p=6.97E-24). Moreover, our dataset overlapped with the DNA methylation map of pluripotent and differentiated cells11 (66 genes) and with GSEA C2 curated datasets related to stemness (Suppl. Table 2). On these grounds, we investigated by IHC the expression of three major EMT regulators, i.e. TWIST1, SNAI2/SLUG and ZEB1. Beside acting as EMT regulators, these transcription factors are also involved in stem cell maintenance, mesoderm development and neural crest specification.

Intriguingly, FS-DFSP displayed an increased number of decorated nuclei for any of the three EMT master regulators tested (Suppl. Fig. 5). These genes did not emerge as differentially expressed by transcriptome sequencing analysis, but their protein product is known to undergo post-transcriptional regulation12,13.

Molecular data integration suggests a role for 22q loss in FS evolution

Positional gene enrichment analysis unveiled that a significant fraction of genes modulated during the transition from DFSP to FS-DFSP belonged to the 22q13 and 12q chromosome regions (Suppl. Table 2). In particular, of the 24 genes significantly modulated mapping on 22q, 16 were downregulated in FS-DFSP. These downregulated genes were all telomeric to PDGFB, whilst those centromeric to PDGFB tended to be upregulated.
To get insights on these findings, 5 DFSP and 5 FS-DFSP were analyzed by SNP array to identify copy number variations (CNV). CNV data were then integrated with the fusion transcript detection performed on RNA-seq data to build the complete picture of genomic structural variations. (Fig. 2, Suppl. Table 3). Several alterations were estimated as mosaic and thus were representative of the clonal architecture of the tumor.

DFSP were characterized by several macroscopic and few focal amplifications or deletions (mean: 7.7 regions for sample). On the contrary, FS-DFSP carried numerous alterations with a relevant increase of focal amplifications and deletions (mean: 27.2 regions for sample). Interestingly, the only FS patient carrying a lower number of genomic alterations (D3), was the one showing a gene expression profile clustering with DFSP. Among the 182 altered genomic regions, the majority (69%) were gains of one or more copies. DFSP and FS-DFSP shared gains of 3 or more copies of the chromosomal regions flanking the \textit{COL1A1-PDGFB} breakpoint. Namely, gain of the entire 17q21.33-q25.3 of chromosome 17 region (telomeric to \textit{COL1A1}) and gain of the 22q12.3-q13.1 region (centromeric to \textit{PDGFB}) were detected in all cases. FS-DFSP tended to show a higher frequency of copy number losses compared to DFSP. Gain of the whole chromosome 12 was observed in 2/5 FS-DSFP, a finding that is in line with RNA-seq cytoband gene enrichment analysis. Macroscopic amplification of chromosome 5 was detected in 3 FS-DFSP and 2 DFSP, these latter carrying also gain of chromosome 1 and 4. One DFSP carried an extra-copy of chromosome 8. Gains of chromosome 4, 5, 8 and 12 have been previously reported in DSFP14.

Interestingly, in line with \textit{in silico} predictions based on RNA-seq data, SNP array analysis highlighted the deletion of the 22q13-ter chromosome region, just telomeric to the PDGFB breakpoint, in 4 FS-DFSP. Loss of 22q13-ter was observed also in the classic component of the tumor (case D6) that displayed both components and was the only locally relapsed DFSP included in the study (Fig 3/A).

Apart from few discrepancies (likely due to intratumoral heterogeneity, non-tumoral cell contamination, complex and cryptic rearrangements), FISH analyses supported SNP array data.
and corroborated the involvement of chromosome 22 loss in FS evolution. Precisely, beside the translocated alleles (one in case D5, 2-3 in cases D1, D3, D7, D8, D9, D11 and more than three in cases D2, D4, D6) and two intact COL1A1 genes, all but one DFSP carried two no-translocated PDGFB alleles (chromosome 22) whilst all FS-DFSP retained just one copy (Fig. 3/B, 3/C and Suppl. Fig.3). The patterns observed fit well with the features of the DFSP t(17;22) rearrangement as described in classic cytogenetics (see Cancer Genome Anatomy Project, http://cgap.nci.nih.gov/) which, with the exception of the juvenile forms (not included in this study), is typically unbalanced in origin. Indeed, the most frequent abnormality reported is the presence of one or more copies of a der(22) t(17;22) or related rings/marker chromosomes, together with two copies of normal chromosome 17. Moreover, in the majority of DFSP karyotypes two copies of a normal chromosome 22 are also present, while the remaining karyotypes (about 1/3 in the Cancer Genome Anatomy Project files) show a single intact copy of chromosome 22. Intriguingly, in our series, the presence of one single copy of non-translocated PDGFB/ non-translocated chromosome 22 segregated with the FS form. Taken together, our results indicate that the detection of chromosome 22q13-ter loss by SNP array likely reflects the retention of a single intact chromosome 22 in FS-DFSP.

A scrutiny of the potential tumor suppressor genes mapping within the 22q13-ter deleted region in FS-DFSP pointed to the presence of two members of the let-7 family of microRNA, let-7a-3 and let-7b. qRT-PCR confirmed the downregulation of let-7a and let-7b in 22q deleted FS-DFSP (Fig 3/D). Intriguingly, these microRNA have been shown to target, among the others, EZH2 (see below).

Both SNP array and FISH analyses pinpointed a possible role of 9p21 loss in metastatic evolution of FS-DFSP. In fact, SNP array revealed high instability of the 9p chromosome region, with multiple deletions of one copy and homozygous loss of the 9p21.3 cytoband, in the 2 FS-DFSP metastatic cases (D2, D9). This chromosome region harbors the p16/INK4A/CDKN2A locus. The deletion of CDKN2A was confirmed by FISH and correlated with loss of p16 expression, as detected by IHC (data not shown).
Finally, integration of SNP array and RNA-seq data indicated that, beside the pathognomonic \textit{COL1A1-PDGFB} chimera, FS-DFSP expressed several additional fusion genes (Suppl. Table 3) indicating a high degree of genomic instability.

\textit{EZH2 is a candidate target in DFSP}

The overlap of the transcriptional profile of FS-DFSP with the DNA methylation map of pluripotent and differentiated cells (11) (Suppl. Table 2) suggested a role for epigenetic remodeling in FS evolution. IHC analyses ruled out a role for INI1 loss in FS-DFSP pathogenesis (data not shown). Instead, the integration of molecular analyses suggested a role for the H3K27 methyltransferases \textit{EZH2}, a component of the Polycomb Repressive Complex 2. In fact, \textit{H19} and \textit{HOTAIR}, two non-coding RNA involved in the regulation of the activity of \textit{EZH2} were among the genes most significantly upregulated in FS-DFSP. The elevated expression of these long non-coding RNA in FS-DFSP was confirmed by qRT-PCR (Suppl. Fig. 4). Although \textit{EZH2} was not included in the set of genes detected as differentially expressed by RNA-seq, IHC analyses revealed an increased number of \textit{EZH2} immunolabeled nuclei in FS-DFSP with respect to DFSP cases, which was paralleled by a higher Ki67 score (Fig. 4, Suppl. Fig. 5). qRT-PCR confirmed higher expression levels of \textit{EZH2} among FS-DFSP (Suppl. Fig. 4). Intriguingly, \textit{EZH2} is among the targets of two microRNA, \textit{let-7a} and \textit{let-7b}, that map in the 22q region that was found deleted in FS-DFSP.
DISCUSSION

In this retrospective series FS transformation was confirmed to be a rare event, that affected only 20 (7.6%) of 263 patients surgically treated for a primary DFSP. All FS-DFSP carried the COL1A1-PDGFB fusion gene. In DFSP, negative margin resection was always curative. No DFSP patient suffered from distant relapses. Local relapses were observed only in patients treated with R1 resection. Metastases occurred only in 2 patients with FS-DFSP (0.76% of the whole series; 10% of FS-DFSP), and it was the first event. The molecular profiling of a subset of 10 cases (5 DFSP and 5 FS-DFSP) indicated that the FS progression is sustained by a transcriptional reprogramming, which is paralleled by loss of genomic material from a non-translocated chromosome 22q. In addition, loss of the short arm of chromosome 9, including the p16/CDKN2A/INK4A locus, was detected in the 2 metastatic FS-DFSP samples. EZH2 emerged as a promising druggable target.

We found FS changes in a minority of cases (7.6%), with available series being consistent with a 5-20% rate of FS transformation. Of course, institutional referral biases as well as sampling issues especially in oldest cases may be relevant. No differences were detected in sex, age and anatomic location between DFSP and FS-DFSP. As we had already described, in this more recent and larger series, focused only on primary cases, we confirm that negative margin resection was always curative for DFSP and prevented LR (not DM) in FS-DFSP as well. The only factor associated to a metastatic risk was the presence of FS features. However this risk was low and the majority of patients with a FS transformation were also cured by surgery alone. By contrast, none of DFSP patients developed metastasis. Interestingly, none of our FS-DFSP patients with DM had a LR, suggesting that DM may be inherently related to tumor biology. By contrast, quality of surgical margin was not related to the histology but to the presence of a critical anatomic location. In particular, the LR risk was nil also for FS-DFSP patients, when margins were negative. This supports the notion that a wide surgical resection still remains the gold standard in both DFSP and FS-DFSP.
Cases of FS transformation occurring over time in DFSP after multiple local relapses are described in other reports\(^8\). We cannot challenge this possibility, since the proportion of patients who relapsed was very low. On the other side, a wide resection or a re-excision in case of positive margins should always be considered in FS-DFSP, given the risk of developing metastatic disease\(^2,4,8\), while positive surgical margins may still be accepted in DFSP, especially when cosmesis is an issue. It is therefore evident the importance of an adequate tumor sampling and of a correct pathologic diagnosis in the decision making.

We run a set of molecular investigations aimed at shedding light on the mechanisms of FS evolution and, ideally, at identifying markers of prognostic and predictive value. To this end we initially compared the transcriptome profile of 5 DFSP and of 5 FS-DFSP. All samples expressed the \textit{COL1A1-PDGFB} fusion transcript, with no significant variation in its expression levels between DFSP and FS-DFSP, as previously reported\(^4,8\). No other recurrent fusion transcripts that may hallmark the FS-DFSP variant were detected.

Pathway analysis ruled out a major role for the immune response in FS evolution of DFSP, and suggested instead an involvement of tumor microenvironment and extracellular matrix remodelling. In particular the switch from DFSP to FS-DFSP was paralleled by an enrichment in genes belonging to the epithelial-mesenchymal transition (EMT) gene signature, as defined by Groger and co-workers\(^15\). The EMT program has been linked to aggressive tumor behavior, and modulation of mesenchymal traits toward a more undifferentiated state has been previously reported to play a pivotal role in sarcoma development and progression\(^16-21\). EMT is governed by a set of transcription factors among which TWIST1, SNAI2/SLUG, ZEB1. Here we demonstrate that these proteins are markedly increased in FS-DFSP compared with DFSP. Noteworthy, the EMT program involves epigenetic remodeling with DNA and histone modifications\(^21\).

Our study suggests that DFSP evolution to FS-DFSP might be correlated to loss of chromosome material involving the 22q region telomeric to PDGFB. In fact, a significant fraction of genes...
detected by RNA-seq as modulated in FS-DFSP compared to DFSP turned out to belong to the long arm of chromosome 22, which bear the PDGFB gene. In particular, FS-DFSP exhibited downregulation of genes telomeric to PDGFB (22q13-ter). This was is in keeping with SNP array data, which highlighted in FS-DFSP recurrent loss of material from the 22q-ter chromosome region. FISH analyses indicated that the pattern observed was compatible with the loss of one copy of non-translocated chromosome 22. To the best of our knowledge 22q loss, although occasionally reported22-28, has never been associated to FS evolution. Previously, FS transformation of DFSP had been correlated to the amplification of COL1A1-PDGFB fusion, association that we and others failed to confirm4,22. Also in the series here analyzed, both DFSP and FS-DFSP shared extra copies of the chromosome material flanking the COL1A1-PDGFB breakpoint, ruling out a major role for COL1A1-PDGFB amplification in FS evolution.

Chromosome 22q loss, in form of deletion or monosomy, is a recurrent event in different types of cancer, comprising GIST and rhabdoid tumors29-32, and several minimal deleted regions, including 22q13-ter33, have been identified harboring putative tumor suppressor genes. Interestingly, a scrutiny of the genes targeted by the 22q13-ter loss in FS-DFSP pointed to 2 members of the let-7 family of miRNAs, let-7a and let-7b. Let-7 genes encode tumor suppressor miRNAs that control the expression a number of proteins involved in proliferation and apoptosis, EMT, adhesion and migration34,35. Among others, let-7 miRNAs have been implicated in the regulation of components of the epigenetic machinery, namely EZH236. EZH2 is the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) that typically controls histone methylation-mediated gene repression via local chromatin reorganization, but it may also act as a gene activator through a PRC2-independent route. EZH2 plays a critical role in cancer development and progression by epigenetically altering the gene expression program37,38. Molecular analyses confirmed the downregulation of let-7a and let-7b in FS-DFSP and IHC showed an increase of EZH2 immunolabeled nuclei in FS-DFSP. Moreover, 2 non-coding RNAs involved in the regulation of EZH2, H19 and HOTAIR39-41, turned out to be among the RNAs most significantly upregulated in
FS-DFSP. This finding suggests that overexpression of H19 and HOTAIR, together with let-7 downregulation, all concur to induce EZH2 and, in turn, chromatin remodeling and mesenchymal transdifferentiation in FS-DFSP19,39-41.

A role for epigenetic reprogramming in FS transformation was also supported by the finding that 66 genes enriched in FS-DFSP versus DFSP are reported to undergo epigenetic regulation11, and recent evidence are consistent with the involvement of chromatin remodeling in translocation-associated sarcomas42. Overall, our analyses point at EZH2 as a promising target in DFSP. Remarkably, selective inhibitors of EZH2 are now available in the clinic. In particular the EZH2 inhibitor tazemetostat is entering a phase III clinical study in \textit{INI1} deleted sarcoma by virtue of a functionally antagonistic relationship between PcG proteins and SWI/SNF complex43. Our study suggests that this class of drug could be interesting in advanced FS-DFSP, even though EZH2 up-regulation is mediated here by mechanism other than the deletion of \textit{INI1}/\textit{SMARCB1}.

Structural variation analysis revealed a loss of the short arm of chromosome 9 (9p21), that harbours the \textit{CDKN2A} locus, in the two metastatic samples included in the study. Interestingly, none of the other patients of the present series has developed metastasis to date.. The \textit{CDKN2A} locus encodes \textit{p16/INK4A}, an inhibitor of cyclin D–CDK4/6 complexes, and \textit{p14ARF} that negatively controls HDM2-mediated ubiquitination and degradation of p53. Loss of the \textit{CDKN2A} promotes uncontrolled cell proliferation and tumor progression44. In our series, \textit{CDKN2A} homozygous deletion correlated with loss of \textit{p16} expression, as indicated by FISH and IHC. Our finding, which is in line with a recent report by Eilers and coworkers45, indicates that \textit{p16} loss might identify a subset of DFSP/FS-DFSP with poor prognosis. Noteworthy, a epigenetic link between \textit{p16} loss and EZH2 expression has been recently suggested46. The evaluation of \textit{p16} gene copy number in the primary tumor of FS-DFSP patients included in the surgical series is ongoing to investigate to which extent this alteration is present at disease onset and correlates with the development of distant metastasis.
Overall, our study confirms that fibrosarcomatous evolution is a rare event in DFSP, marked by a low metastatic risk. Interestingly none of DFSP patients suffered from distant relapse and all cases were cured by negative margin surgery. This should be used to inform treatment decision for both DFSP variants. The molecular profiling of DFSP and FS-DFSP implicated EMT and epigenetic remodeling, and unveiled a possible role for chromosome 22q13-ter loss in FS evolution and CDKN2A/p16 loss in dismal prognosis, findings that are worthy of further investigation in larger series. The finding that EZH2 is upregulated in FS-DFSP disclose novel therapeutic opportunities for this subset of tumors.
Table 1: Main patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>Classic DFSP</th>
<th>FS-DFSP</th>
<th>Tot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Patients</td>
<td>243</td>
<td>92.4</td>
<td>20</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>116</td>
<td>47.7</td>
<td>7</td>
</tr>
<tr>
<td>Male</td>
<td>127</td>
<td>52.3</td>
<td>13</td>
</tr>
<tr>
<td>Patient’s age, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>39 (18-80)</td>
<td>40 (26-80)</td>
<td>39 (18-80)</td>
</tr>
<tr>
<td>Tumor size, cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>2 (1-20)</td>
<td>6 (1-11)</td>
<td>2 (1-20)</td>
</tr>
<tr>
<td>Surgical Margins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R0</td>
<td>222</td>
<td>91.4</td>
<td>18</td>
</tr>
<tr>
<td>R1</td>
<td>21</td>
<td>8.6</td>
<td>2</td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremities</td>
<td>148</td>
<td>61</td>
<td>14</td>
</tr>
<tr>
<td>Trunk</td>
<td>69</td>
<td>28.3</td>
<td>4</td>
</tr>
<tr>
<td>Head&Neck</td>
<td>26</td>
<td>10.7</td>
<td>2</td>
</tr>
<tr>
<td>Pre-operative Imatinib</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Done</td>
<td>4</td>
<td>1.6</td>
<td>1</td>
</tr>
<tr>
<td>Not done</td>
<td>239</td>
<td>98.4</td>
<td>19</td>
</tr>
<tr>
<td>Post-operative RT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Done</td>
<td>4</td>
<td>1.6</td>
<td>1</td>
</tr>
<tr>
<td>Not done</td>
<td>239</td>
<td>98.4</td>
<td>19</td>
</tr>
</tbody>
</table>
Table 2: Characteristics of the tissue samples molecularly profiled

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Origin of the tissue sample molecularly profiled</th>
<th>Path diagnosis</th>
<th>FISH analysis COL1A1/PDGFRB</th>
<th>Primary tumor site</th>
<th>Prior medical treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>primary tumor</td>
<td>DFSP</td>
<td>positive</td>
<td>skin</td>
<td>naive</td>
</tr>
<tr>
<td>D2</td>
<td>metastasis (retroperitoneum)</td>
<td>FS-DFSP</td>
<td>positive</td>
<td>skin</td>
<td>chemotherapy and radiotherapy</td>
</tr>
<tr>
<td>D3</td>
<td>primary tumor</td>
<td>FS-DFSP</td>
<td>positive</td>
<td>skin</td>
<td>naive</td>
</tr>
<tr>
<td>D4</td>
<td>primary tumor</td>
<td>FS-DFSP</td>
<td>positive</td>
<td>skin</td>
<td>naive</td>
</tr>
<tr>
<td>D5</td>
<td>local relapse</td>
<td>FS-DFSP</td>
<td>positive</td>
<td>skin</td>
<td>naive</td>
</tr>
<tr>
<td>D6</td>
<td>primary tumor</td>
<td>DFSP</td>
<td>positive</td>
<td>skin</td>
<td>naive</td>
</tr>
<tr>
<td>D7</td>
<td>primary tumor</td>
<td>DFSP</td>
<td>positive</td>
<td>skin</td>
<td>naive</td>
</tr>
<tr>
<td>D8</td>
<td>primary tumor</td>
<td>DFSP</td>
<td>positive</td>
<td>skin</td>
<td>naive</td>
</tr>
<tr>
<td>D9</td>
<td>metastasis (lung)</td>
<td>FS-DFSP</td>
<td>positive</td>
<td>scalp</td>
<td>naive</td>
</tr>
<tr>
<td>D11</td>
<td>primary tumor</td>
<td>DFSP</td>
<td>positive</td>
<td>skin</td>
<td>naive</td>
</tr>
</tbody>
</table>
FIGURE LEGEND

Figure 1 Case D6. A. H/E staining. DFSP (left) with fibrosarcomatous overgrowth (right). B. A serial section immunolabelled with Ki-67 antibody. C-F. Higher magnification of the corresponding low and high grade proliferation areas of panels A and B, respectively.

Figure 2 Circo plots representing genomic structural variants carried by DFSP (A) and FS-DFSP (B). The graph shows the chromosomes arranged in a circular orientation. Rings identify the patients, colored tracks regions of copy number alteration. Color code is: dark green: homozygous deletion; light green: heterozygous deletion; light red: gain of one copy; dark red: copy number >3; grey dotted line: < 50% mosaic alteration; black dotted line: >50% mosaic alteration; black line: full copy number gain or loss. Colored lines connects positions that participate in genomic rearrangements giving rise to fusion transcripts.

Figure 3 Chromosome 22q13-ter loss in FS-DFSP
A: Graphical representation of copy number (CN) gains and losses on chromosome 22q in DFSP (cases D1, D6, D7, D8, D11) and FS-DFSP (cases D2, D3, D4, D5, D9). Colored lines: CN=2 (diploid region); Red bar: CN=1; Blue bar: CN=3; Deep blue bar: CN>3. The arrow indicates the PDGFB breakpoint at 22q13.1. B and C: COL1A1 (Spectrum Green) and PDGFB (Spectrum orange) probes. Two fusion signals, together with 2 free red and 2 free green signals corresponding to intact copies of PDGFB and COL1A1, respectively, were detected in DFSP cells (case D8 is shown as an example) (B). The presence of 2 fusion signals, 2 green signals and one single free red signal in FS-DFSP cells support the loss of chromosome 22q in fibrosarcomatous evolution (case D9) (C). These patterns were coherent with PDGF Break apart FISH (Suppl. Fig. 5). D: Let-7a and Let-7b gene expression in DFSP and FS-DFSP. Plots show the relative quantification (RQ) by qRT-PCR of Let-7a and Let-7b expression in DFSP vs FS-DFSP and in 22q13-ter deleted vs non-deleted samples. Statistical p values (unpaired Student’s t test) are indicated.
Figure 4 EZH2 staining. Imaging gallery demonstrating the marked increase of EZH2 decorated nuclei in FS-DFSP (top row) when compared to DFSP (bottom row).
Authors' Contributions

Acquisition and management of clinical data: Stacchiotti S, Gronchi A, Fontana A, Colombo C, Redaelli S, Casali PG

Writing of the manuscript: all the authors

Grant Support

This work was supported by the Italian Association for Cancer Research (AIRC) and by the Italian Ministry of health (Ricerca Finalizzata).

MB is the recipient of an FIRC fellowship.
REFERENCES

Evolution of Dermatofibrosarcoma protuberans (DFSP) to DFSP-derived fibrosarcoma (FS-DFSP): an event marked by epithelial mesenchymal transition-like process and 22q loss

Silvia Stacchiotti, Annalisa Astolfi, Alessandro Gronchi, et al.

Mol Cancer Res Published OnlineFirst June 2, 2016.