HIGHLIGHTS

1249 Selected Articles from This Issue

REVIEW

1251 Emerging Roles for AKT Isoform Preference in Cancer Progression Pathways
Seamus E. Degan and Irwin H. Gelman

CANCER GENES AND NETWORKS

1258 EGR1 Addiction in Diffuse Large B-cell Lymphoma

1270 Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Coregulator in Invasive Lobular Carcinoma of the Breast

1283 Mutant KRAS Downregulates the Receptor for Leukemia Inhibitory Factor (LIF) to Enhance a Signature of Glycolysis in Pancreatic Cancer and Lung Cancer
Suhu Liu, Helen I. Gandler, Isidora Tošić, Darwin Q. Ye, Zachary T. Giaconne, and David A. Frank

1296 Protein Kinase D-Dependent Downregulation of Immediate Early Genes through Class IIA Histone Deacetylases in Acute Lymphoblastic Leukemia
Guangyan Sun, Anna Shvab, Guy J. Leclerc, Bin Li, Felipe Beckedorff, Ramin Shiekhattar, and Julio C. Barreto

CANCER “-OMICS”

1308 Genomic Landscape of Primary and Recurrent Anal Squamous Cell Carcinomas in Relation to HPV Integration, Copy-Number Variation, and DNA Damage Response Genes
Jordan Aldersley, David R. Lorenz, Kent W. Mow, Alan D. D’Andrea, and Dana Gabuzda

1322 Quantitative Proteomics Identifies Secreted Diagnostic Biomarkers as well as Tumor-Dependent Prognostic Targets for Clear Cell Renal Cell Carcinoma
Aydanur Senturk, Ayse T. Sahin, Ayse Armutlu, Murat C. Kiremit, Omer Acar, Selcuk Erdem, Sidar Bagbudar, Tarik Esen, Nurcan Tuncbag, and Nurhan Ozlu

GENOME MAINTENANCE

1338 Autophagy-Dependent Sensitization of Triple-Negative Breast Cancer Models to Topoisomerase II Poisons by Inhibition of the Nucleosome Remodeling Factor

1350 CHK2 Inhibition Provides a Strategy to Suppress Hematologic Toxicity from PARP Inhibitors
Zhen Xu, Cassandra J. Vandenbarg, Elizabeth Lieschke, Ladina Di Rago, Clare L. Scott, and Ian J. Majewski

1361 R-Loop–Mediated ssDNA Breaks Accumulate Following Short-Term Exposure to the HDAC Inhibitor Romidepsin
METABOLISM

1375 Elevated Asparagine Biosynthesis Drives Brain Tumor Stem Cell Metabolic Plasticity and Resistance to Oxidative Stress

Tom M. Thomas, Ken Miyaguchi, Lincoln A. Edwards, Hongqi Wang, Hassen Wolebo, Li Aiguo, Ramachandran Murali, Yizhou Wang, Daniel Braas, Justin S. Michael, Allen M. Andres, Miqin Zhang, Kamel Khalili, Roberta A. Gottlieb, J. Manuel Perez, and John S. Yu

NEW HORIZONS IN CANCER BIOLOGY

1389 TSC2 Interacts with HDLBP/Vigilin and Regulates Stress Granule Formation

Kosmas Kosmas, Harilaos Filippakis, Damir Khabibullin, Michal Turkiewicz, Hilaire C. Lam, Jane Yu, Nancy L. Kedersha, Paul J. Anderson, and Elizabeth P. Henske

RNA BIOLOGY

1398 Mapping of m^6^A and Its Regulatory Targets in Prostate Cancer Reveals a METTL3-Low Induction of Therapy Resistance

Kellie A. Cotter, John Gallon, Nadine Uebersax, Philip Rubin, Kate D. Meyer, Salvatore Piscuoglio, Samie R. Jaffrey, and Mark A. Rubin

TUMOR MICROENVIRONMENT AND IMMUNOBIOLOGY

1412 AXL Is a Key Factor for Cell Plasticity and Promotes Metastasis in Pancreatic Cancer

Wenting Du, Natalie Z. Phinney, Huocong Huang, Zhaoning Wang, Jill Westcott, Jason E. Toombs, Yuqing Zhang, Muhammad S. Beg, Thomas M. Wilkie, James B. Lorenz, and Rolf A. Brekken

1422 Distinct Biomarker Profiles and TCR Sequence Diversity Characterize the Response to PD-L1 Blockade in a Mouse Melanoma Model

Rajaa El Meskini, Devon Atkinson, Alan Kulaga, Abdalla Abdelmaksoud, Michelle Gumprecht, Nathan Pate, Susana Hayes, Michael Oberst, Ian M. Kaplan, Patrick Rabe, Terry Van Dyke, Shyam K. Sharan, Robert Hollingsworth, Chi-Ping Day, Glenn Merlino, and Zoë Weaver Ohler

CORRECTIONS

1437 Correction: Elevated Asparagine Biosynthesis Drives Brain Tumor Stem Cell Metabolic Plasticity and Resistance to Oxidative Stress

1438 Correction: OLR1 Promotes Pancreatic Cancer Metastasis via Increased c-Myc Expression and Transcription of HMGA2

ABOUT THE COVER

Invasive lobular carcinoma of the breast (ILC) is the most common special subtype of breast cancer, and though nearly all ILC express estrogen receptor alpha (ERα), ILC represent a distinct context for ERα function among breast cancers. The cover depicts a stylized immunofluorescence image showing DNA damage foci to which Mediator of DNA Damage Checkpoint 1 (MDC1) has localized. MDC1 canonically acts in the DNA damage response. However, in their study on page 1270, Sottnik, Bordeaux, and colleagues provide evidence that MDC1 also has novel ERα co-regulator activity and is critical for ERα function in ILC cells. The authors argue that canonical functions of MDC1 in DNA repair may be superseded by novel ERα co-regulator activity in this context. Artwork by Kristine M. Sikora, PhD.
Molecular Cancer Research

19 (8)

Updated version
Access the most recent version of this article at:
http://mcr.aacrjournals.org/content/19/8

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mcr.aacrjournals.org/content/19/8.
Click on "Request Permissions" which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.