Genomic Characteristics of Triple-Negative Breast Cancer Nominate Molecular Subtypes That Predict Chemotherapy Response

Jihyun Kim1, Doyeong Yu1, Youngmee Kwon2, Keun Seok Lee2, Sung Hoon Sim2,3, Sun-Young Kong3,4, Eun Sook Lee2,4, In Hae Park2,3, and Charny Park1

ABSTRACT

The heterogeneity of triple-negative breast cancer (TNBC) poses difficulties for suitable treatment and leads to poor outcome. This study aimed to define a consensus molecular subtype (CMS) of TNBC and thus elucidate genomic characteristics and relevant therapy. We integrated the expression profiles of 957 TNBC samples from published datasets. We identified genomic characteristics of subtype by exploring the pathway activity, microenvironment, and clinical relevance. In addition, drug response (DR) scores (n = 181) were computationally investigated using chemical perturbation gene signatures and validated in our own patient with TNBC (n = 38) who received chemotherapy and organoid biobank data (n = 64). Subsequently, cooperative functions with drugs were also explored. Finally, we classified TNBC into four CMSs: stem-like; mesenchymal-like; immunomodulatory; luminal-androgen receptor. CMSs also elucidated distinct tumor-associated microenvironment and pathway activities. Furthermore, we discovered metastasis-promoting genes, such as secreted phosphoprotein 1 by comparing with primary. Computational DR scores associated with CMS revealed drug candidates (n = 18), and it was successfully evaluated in cisplatin response of both patients and organoids. Our CMS recapitulated in-depth functional and cellular heterogeneity encompassing primary and metastatic TNBC. We suggest DR scores to predict CMS-specific DRs and to be successfully validated. Finally, our approach systemically proposes a relevant therapeutic prediction model as well as prognostic markers for TNBC.

Introduction

Triple-negative breast cancer (TNBC) is known to have poor prognosis and the tendency of early metastasis (1). Although TNBC shows a higher response rate to standard chemotherapy than hormone receptor–positive breast cancer, it has poor prognosis due to early development of multidrug resistance (2). Recently, targeted therapy based on genomic characteristics was introduced with promising development of multidrug resistance (2). Recently, targeted therapy and drug resistance (3). In addition, immune-modulating agent, anti-programmed death-ligand 1 (PD-L1) antibody, and atezolizumab demonstrated outstanding results in patients with metastatic TNBC whose tumors had higher PD-L1 expression (4). To find the appropriate drug for each patient with TNBC, a thorough understanding of the heterogeneity of TNBC and robust subtype identification are prerequisites.

Previous TNBC subtype identification studies have proposed various classification and subtypes of size 3 to 6. Lehmann’s classification has advanced to specify the heterogeneity and clinically evaluated several independent cohorts (5–7). Further studies proposed different-size subtypes of 3 or 4 based on next-generation sequencing using a more robust algorithm (8, 9). However, owing to restricted sample size (n < 200) originating from a single platform or insufficient algorithm optimization to refer diagnostic gene set, a robust TNBC subtype classification has not been established in the absence of multiple validations. In addition, previous classification was restricted to only primary tumors despite poor outcomes due to metastatic tumor development.

As an additional important factor of tumor heterogeneity, the tumor-associated microenvironment (TME) confers genetic diversity to tumor bulk cells. Cellular characteristics are decided by tumorigenic origin (10). As proven in a single-cell platform, the TME cell population cooperates with the chemotherapy response (11, 12). Cell abundance investigation to induce transitional diversity is unrestricted to a single-cell platform. Distinct cell abundance identification could be estimated from bulk tumor sample gene expression profiles using cell deconvolution technologies (13, 14). Expanded cellular investigation in terms of TME could reveal the origin of functional heterogeneity and specify therapeutic targets.

Due to the complex interactions between heterogeneous tumor cells and TME, there have been a few successes in attempts to search novel

1Bioinformatics Analysis Team, Research Institute, National Cancer Center, Goyang, Republic of Korea. 2Center for Breast Cancer Hospital, National Cancer Center, Goyang, Republic of Korea. 3Translational Cancer Research Branch, Division of Translational Science, National Cancer Center, Goyang, Republic of Korea. 4Graduate School for Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea.

Note: Supplementary data for this article are available at Molecular Cancer Research Online (http://mcr.aacrjournals.org/).

J. Kim and D. Yu contributed equally to this article as first authors.

Corresponding Authors: Charny Park, National Cancer Center, 323 Ilsan-ro, Ilsan-dong-gu, Goyang-si, Gyeonggi-do 10408, Republic of South Korea. Phone: 82-031-920-2593; E-mail: charmy78@ncc.re.kr; and In Hae Park, parkih@ncc.re.kr

doi: 10.1158/1541-7786.MCR-19-0453

©2019 American Association for Cancer Research.
drug targets computationally in TNBC. To reveal the mode of action and to identify novel drug–target relationships, pharmacogenomics approaches utilizing gene expression or mutation profiles have been suggested (15, 16). However, most computational methods were performed using genetic profiles of cell lines, and validation was insufficient to follow actual patients’ responses. A systematic approach interconnected with molecular subtype diagnosis and therapeutic strategy is required to find effective treatment.

In the current study, utilizing gene expression profiles, we established various classification and prediction models. Machine-learning approaches referring related gene expression signature classified two types: a consensus molecular subtype (CMS) by support vector machine (SVM) and primary–metastasis by random-forest model. In-depth investigation using known gene signatures recapitulated genomic characteristics and clinical relevance of CMS and metastasis. We also carried out TME and mammary gland cells by TNBC bulk cell deconvolution and revealed the cellular heterogeneity of CMS. In additional study, we established drug response (DR) prediction model to compute DR score based on chemical perturbation gene signatures. We identified subtype-related DRs and pathway interventions. The DR predictions were validated in actual patient’s cisplatin response and matched gene expression profile as well as TNBC organoid (17).

Materials and Methods

CMS classification and functional investigation using gene expression profile

We collected 1,525 gene expression profiles from 14 high-throughput gene expression datasets related to metastasis and TNBC from the Gene Expression Omnibus (GEO; Supplementary Table S1). To eliminate the batch effect from the datasets, meta-analysis of the datasets was performed using ComBat (18). Next, we confirmed the removal of the batch effect of the expression profiles in each dataset using a principal component analysis (PCA) plot (Supplementary Fig. S1A). We removed samples considered as positive for each estrogen receptor (ER+), progesterone receptor (PR+), and HER2+ followed by Lehmann study’s filtering strategy based on bimodal distribution (5). In addition, IHC-based diagnosis profiles for ER+, PR+, and HER2+ were considered for judicious sample elimination. We exceptionally considered metastasis cell isolation from primary breast pleural cells as metastasis sample (Supplementary Table S1). Finally, one aggregated expression profile was generated including 601 primary and 356 metastatic samples. We clustered samples using the nonnegative matrix factorization method, and the number of clusters was verified by silhouette width for each subtype (Supplementary Fig. S1B). Next, we established a CMS classifier based on an SVM using the expression profile of 1,227 genes (information gain \(\geq 0.1 \); Supplementary Table S2) as a training dataset. The classification performance of the SVM was investigated by 5-fold cross-validation with 1,000 iterations. Accuracy, sensitivity, and specificity were calculated for each subtype. We compared our TNBC CMS with the Lehmann and Burstein expression profiles. In addition, 10-year metastasis-free survival and overall survival differences in CMS were investigated using Cox regression.

Matched clinical information is based on GEO. Sample counts after filtering out ER-, PR-, and HER2-positive samples are listed under Supplementary Table S1. We removed samples considered as positive for ER+, PR+, and HER2+ selected for judicious sample elimination. We exceptionally considered metastasis cell isolation from primary breast pleural cells as metastasis sample (Supplementary Table S1). Finally, one aggregated expression profile was generated including 601 primary and 356 metastatic samples. We clustered samples using the nonnegative matrix factorization method, and the number of clusters was verified by silhouette width for each subtype (Supplementary Fig. S1B). Next, we established a CMS classifier based on an SVM using the expression profile of 1,227 genes (information gain \(\geq 0.1 \); Supplementary Table S2) as a training dataset. The classification performance of the SVM was investigated by 5-fold cross-validation with 1,000 iterations. Accuracy, sensitivity, and specificity were calculated for each subtype. We compared our TNBC CMS with the Lehmann and Burstein expression profiles. In addition, 10-year metastasis-free survival and overall survival differences in CMS were investigated using Cox regression.

Matched clinical information is based on GEO. Sample counts after filtering out ER-, PR-, and HER2-positive samples are listed under primary and metastasis. A part of the samples include long-distance metastasis described in tissue type. In total, 601 primary and 356 metastasis samples were chosen for functional analysis.

Pathway activity scores were derived from gene expression profiles using Z-score transformation after gene set variation analysis (GSVA) enrichment scoring by referring to hallmark gene sets from MSigDB or additional gene signatures (19–21).

Key pathways inducing distinct CMS characteristics were chosen by limma test \((P < 1e-05) \). To verify functionality for each CMS, we collected seven representative gene signatures to extract subtype characteristics, namely epithelial-to-mesenchymal transition (EMT), stromal, immune, TME, stemness, chromosomal instability (CIN), and hormone. Next, enrichment scores were estimated using GSVA. The EMT score was defined from normalized average expression values using a previously studied EMT gene set (22). The abundance of stromal and immune cells was estimated by the ESTIMATE tool (23). To perform cross-validation of immune infiltration, the TME score was calculated by xCell (14). The stemness score was determined from The Cancer Genome Atlas (TCGA) pan-cancer stemness index (24). In addition, we referred to embryonic stem (ES) cell-like gene expression signatures of Nanog homeobox (NANOG), OCT4, SRY-related HMG-box 2 (SOX2), and MYC, which are known to be overexpressed in poorly differentiated tumors (25). The CIN score was derived from the CIN70 gene expression signature (26). Hormone response was summarized from the average score of the ER and androgen receptor (AR) response pathway scores. We compared the seven representative gene signature scores of our CMS with the Lehmann and Burstein classification. The difference in scores among subtypes was tested by the Mann–Whitney U test.

To reveal the TME heterogeneity, we estimated cell abundance, known as the deconvolution method, of nonimmune stromal and immune cells. The abundance of mammary gland cells was computed using MCPCounter using cell marker gene sets revealed by a single-cell study (27, 28). In addition, the proportion of immune cells was estimated using CIBERSORT (13).

To evaluate association between BRCAness and stem-like (SL) type, we classified TCGA BRCA TNBC into our CMSs and called germline mutations from TCGA breast cancer TNBC samples (total \(n = 1,101 \), TNBC \(n = 120 \)) and mutation calling pipeline followed by GATK v3.3 germline short variant discovery pipeline (29). First, the mutations were called using HaplotypeCaller and filtered out low-quality variants by VariantFilteration. To extract pathogenic and functional germline mutations, we chose BRCA1/2 variants registered as “Pathogenic” or “Likely pathogenic” in ClinVar, INDEL, or truncated mutations (30).

To infer the genetic characteristics of metastatic transition in our aggregated data, we analyzed differentially expressed genes (DEG) between primary tumor and metastasis samples using limma (adjusted \(P < 0.001 \); Benjamini–Hochberg correction). Next, significant pathways were inferred from the DEGs by gene set enrichment analysis (GSEA) using ReactomeFDR (31). Finally, the DEGs based on the GSEA test (FDR < 0.05) were used to develop a gene–gene interaction network, visualized using Cytoscape. In addition, we generated a metastasis prediction model based on these prognostic markers. First, we tested for MFS and concordance index from DEGs previously comparing primary with metastasis samples. Tests were performed using the R package survcomp, and the identified gene set was defined as the metastasis prediction gene set (32). Next, to test the metastasis prediction availability of gene set, we established a random-forest machine-learning model to classify primary and metastasis samples using the metastasis prediction gene set identified from MFS test \((P < 0.05) \). Finally, the random-forest model was evaluated by AUC metric using a 4-fold cross-validation procedure. Pathways of metastasis prediction gene set were also investigated using GSEA.
TNBC Subtypes and Chemotherapy Response

Computational DR prediction applying chemical perturbation gene signature and cross-validation

To explore the relevant DR status for each patient, we computed the DR scores in both aggregated data and biobank expression profiles (17). DR scores were calculated by the GSVA method using the MSigDB chemical and genetic perturbation signature gene set (17). Next, we selected drug signatures to examine response differences among CMSs using ANOVA. To select reliable DRs, we investigated drug names registered for clinical trials (NIH ClinicalTrials.gov database), considering synonyms provided in Drugbank (33). Meanwhile, paired Pearson correlation coefficients between pathway activities and DR scores were calculated to explore the functional association for each drug. To evaluate DR scores of aggregated data, we referred to biobank expression profiles. First, organoid samples were classified into four subtypes using our CMS classifier, and DR scores were also equally calculated. Subtype specificity of biobank DR scores was also tested by ANOVA.

ROADMAP data analysis related to cisplatin response

Patients and sample preparation

In 2016, we introduced the ROADMAP program to implement genomomic sequencing of tumors and blood coupled with clinical data in the management of advanced refractory breast cancer. As of June 2018, 38 female patients with metastatic TNBC were enrolled, and their genomic and clinical data were obtained after receiving written informed consent. RNA from fresh-frozen or paraffin-embedded (FFPE) tissue samples was extracted using the RNeasy FFPE Kit (Qiagen) according to the manufacturer’s protocol. Total cellular RNA (at least 100 ng) was purified from 1 g total RNA from each sample, and cDNA was synthesized using SuperScript II Reverse Transcriptase (Thermo Fisher Scientific Inc.). Sequencing libraries were prepared using the TruSeq RNA Library Preparation Kit (Illumina) and sequenced using HiSeq 2000.

Gene expression profile processing

After quality trimming using Trimmomatic, we aligned reads to hg19 using the Mapsplice2-like TCGA RNAseqV2 pipeline (34, 35). Next, we quantified the gene expression profile using RSEM v1.1.13 referring to UCSC Known Genes (36). Patient subtypes were assigned by utilizing SVM machine-learning model for CMS TNBC classification described in first method section. The seven representative gene signature scores and DR scores were computed by equal method with an aggregated data. Cox-regression survival analysis was performed for examining 5-year treatment-free survival.

Further investigation of cisplatin DR

The reliability of DR scores was confirmed from both ROADMAP patient therapeutic profiles and biobank. Of the ROADMAP-enrolled patients, 31 patients had undergone cisplatin therapy, and the response log was available. Biobank cell models derived from patients with TNBC were divided into cisplatin response and nonresponse according to drug high-throughput screening (HTS) IC_{50} values. Cisplatin DR scores of ROADMAP patients and biobank cells were tested using the Wilcoxon rank-sum test. We also explored genes involved in cisplatin response by analyzing DEGs between cisplatin-response and -resistance samples using the Wilcoxon rank-sum test (P < 0.05) in the ROADMAP dataset. To avoid the artifact effect from the FFPE status, we eliminated genes that showed differences in expression between FFPE and fresh-frozen samples (Wilcoxon rank-sum test, P < 0.1). Finally, pathways involved in cisplatin response were investigated using ReactomeF I GSEA (31). In addition, survival analysis was performed to identify drug-related prognosis markers based on DEGs. The combined CI and HR were computed to get an overall score from independent datasets including aggregated data and the ROADMAP dataset of prognostic marker genes.

Results

CMS classification

The summary of our aggregated data composed of primary (n = 601) and metastatic (n = 356) TNBC is shown in Table 1. We confirmed to eliminate the batch effect via PCA plot (Supplementary Fig. S1A) and eliminated samples that highly expressed ER, PR, and HER2 using a bimodal filter on the gene expression distribution. The Lehmann subtype supports the most stringent ER, PR, and HER2 filtering to eliminate 15.3% of our aggregated data samples. On the other hand, 56% of Burstein samples to pass IHC were eliminated based on mRNA expression.

Performance evaluation using 5-fold cross-validation confirmed the cluster size (n = 4) via an average silhouette width of 0.57 of our subtypes, indicating remarkably better performance than Lehmann’s (0.09) and Burstein’s (0.18; Supplementary Fig. S1B–S1D). The immunomodulatory (IM) subtype shows the lowest sensitivity than others (Supplementary Fig. S1B and S1C; 84%). However, its silhouette width (0.3) is relatively much higher than Burstein’s (0.08) and Lehmann’s (0.06) classification. In independent signature-based validation, our CMS showed the best performance overall (Supplementary Fig. S1E). IM subtype’s discriminative power by ESTIMATE immune scores shrank in both ours and previous studies than others, but our CMS relatively well classified IM subtype (Supplementary Fig. S1E; P value ours = 1.299e-08; Lehmann = 1.096e-16; Burstein = 0.515).

Table 1. Summary of gene expression profiles from the aggregated data.

<table>
<thead>
<tr>
<th>ID</th>
<th>Total</th>
<th>Primary</th>
<th>Metastasis</th>
<th>Tissue type</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSE103091</td>
<td>107</td>
<td>53</td>
<td>21</td>
<td>Breast</td>
<td>GPL570</td>
</tr>
<tr>
<td>GSE10708</td>
<td>23</td>
<td>14</td>
<td>0</td>
<td>Breast</td>
<td>GPL570</td>
</tr>
<tr>
<td>GSE2034</td>
<td>286</td>
<td>223</td>
<td>0</td>
<td>Breast</td>
<td>GPL96</td>
</tr>
<tr>
<td>GSE46161</td>
<td>91</td>
<td>52</td>
<td>0</td>
<td>Breast, 8</td>
<td>GPL10379</td>
</tr>
<tr>
<td>GSE21276</td>
<td>204</td>
<td>16</td>
<td>129</td>
<td>Breast</td>
<td>GPL570</td>
</tr>
<tr>
<td>GSE41047</td>
<td>29</td>
<td>0</td>
<td>16</td>
<td>Breast</td>
<td>GPL570</td>
</tr>
<tr>
<td>GSE41018</td>
<td>36</td>
<td>0</td>
<td>27</td>
<td>Breast</td>
<td>GPL96</td>
</tr>
<tr>
<td>GSE46563</td>
<td>94</td>
<td>14</td>
<td>0</td>
<td>Breast</td>
<td>GPL6884</td>
</tr>
<tr>
<td>GSE46928</td>
<td>52</td>
<td>20</td>
<td>6</td>
<td>Breast</td>
<td>GPL96</td>
</tr>
<tr>
<td>GSE15327</td>
<td>58</td>
<td>29</td>
<td>9</td>
<td>Breast</td>
<td>GPL96</td>
</tr>
<tr>
<td>GSE45323</td>
<td>29</td>
<td>0</td>
<td>21</td>
<td>Breast</td>
<td>GPL570</td>
</tr>
<tr>
<td>GSE6493</td>
<td>120</td>
<td>0</td>
<td>74</td>
<td>Breast</td>
<td>GPL10379</td>
</tr>
<tr>
<td>GSE7390</td>
<td>198</td>
<td>141</td>
<td>0</td>
<td>Breast</td>
<td>GPL96</td>
</tr>
<tr>
<td>GSE76124</td>
<td>198</td>
<td>91</td>
<td>1</td>
<td>Breast</td>
<td>GPL570</td>
</tr>
<tr>
<td>Total</td>
<td>1,525</td>
<td>601</td>
<td>356</td>
<td></td>
<td>356</td>
</tr>
</tbody>
</table>

Note: Matched clinical information is based on GEO. Sample counts after filtering out ER-, PR-, and HER2-positive samples are listed under primary and metastasis. A part of the samples include long-distance metastasis described in tissue type. In total, 601 primary and 356 metastasis samples were chosen for functional analysis.
In Lehmann’s classification, the mesenchymal SL type showed the highest stromal infiltration, but the discriminative power using the EMT score was better in our CMS (t test, metaCMS $P = 2.86E-69$, Lehmann $P = 7.69E-31$; Supplementary Fig. S1E). The genomic characteristics of mesenchymal type to associate with stemness were ambiguous (Supplementary Fig. S1E). Stemness was diffused across the basal-like (BL) 1, BL2, and mesenchymal subtypes. Consistent with a previous study, the average silhouette width of BL1 showed the worst result (5).

Burstein’s classification resembles with our result rather than Lehmann’s six subtypes, except for the BL immune-activation type ($P < 2.2e-16$, χ^2 test). When investigating Burstein’s dataset ($n = 198$), the BL immune-activation type considerably included stemness samples (18%; Supplementary Fig. S1D and S1E). In immune and TME signatures (Supplementary Fig. S1E), our CMS was more discriminative rather than Burstein’s. Therefore, we finalized the TNBC CMS into the SL (32.1%), mesenchymal-like (MSL, 24.6%), IM (12.9%), and luminal AR (LAR, 30.5%) subtypes (Fig. 1A).

Genomic characteristics and microenvironment of CMSs

Key pathways activated in each subtype were identified from computational scores ($P < 0.1e-06$). Interestingly, IM- and LAR-
associated pathways were also upregulated in the MSL subtype (Fig. 1A). EMT, TGFB, and TP53 signals were constitutively upregulated restricted in the MSL. Our LAR showed the highest ER and AR response, particularly involved in adipogenesis and fatty acid metabolism. IFNγ, IFNγ response, IL6–JAK–STAT3, IL2–STAT5, and inflammatory responses are activated in IM (Fig. 1A). In addition, both representative immune cell infiltration and TME signature show the highest score in IM (Fig. 1B). This indicates that IL–JAK–STAT signaling is implicated in immune infiltration, as identified in previous studies on TNBC (37). TNFα and apoptosis were activated in both IM and MSL. The characteristics of ES cells included an SL subtype, in which cell cycle, proliferation, and ES-associated pathways were activated, such as mitosis, E2F, MYC, WNT-β catenin, and Notch signaling (Fig. 1A and B). As previously known (26, 36), cell-cycle deficiency in the SL subtype induced the highest CIN (Fig. 1B; \(P = 1.35e-120 \)). Meanwhile, DNA repair and glycolysis were enhanced across SL and LAR.

The TME for each CMS presented distinct features in both stromal and immune cells. First, the IM was strongly immune-infiltrated and harbored memory B cells, CD8 T cells, activated CD4 T cells, gamma delta T cells, and activated natural killer cells (Supplementary Fig. S2A; \(P < 1.0e-07 \)), whereas MSL showed a high incidence of M2 macrophages, which was consistent with another study (9). Next, we explored the prognostic effect by immune cells to determine MFS or OS. The results showed that activation of CD8 T cells was associated with good prognosis (Supplementary Fig. S2B; MFS, \(P = 0.005 \); OS, \(P = 0.02 \)). Among the known immunotherapy targets such as CD20, CD52, PD-L1, CTLA4, CD52, and CTLA4 were significantly enhanced in IM (Supplementary Fig. S2C and S2D; ANOVA \(P < 0.001 \) and Tukey test). Another bulk cell deconvolution revealed distinct characteristics of seven mammary gland cells depending on CMS (Fig. 1B; \(P < 3.66e-17 \)). Myoepithelial cells were enriched in the SL, consistent with a previous finding (39), and we additionally discovered that luminal progenitor cells were enhanced in SL. In MSL, adipocytes and matrix metalloproteinases categorizing as stromal cells were highly enriched, followed by luminal epithelial and myoepithelial cells. Interestingly, key pathways of adipogenesis and fatty acid metabolism were activated across the MSL and LAR (Fig. 1A), but adipocytes were enriched only in the MSL type. In addition, we confirmed that tumor-associated stromal cells were infiltrated in MSL from upregulation of nine markers (Supplementary Fig. S3; refs. 40, 41). Luminal epithelial cells showed a strong presence in the LAR, and blood cells undergoing the mitotic cell cycle process were mainly activated in the IM (Fig. 1B). In further investigation of SL characteristics for the SL subtype, we referred to previously known target gene sets of ES cell transcription factors and polycomb-regulated genes (25). As already identified in a previous study, target genes of transcription factors NANOG, OCT4, SOX2, and MYC were clearly activated in SL. In addition, we confirmed that known targets of polycomb repressive complex 2 (PRC2) downregulated in Sl, PRC2 subunit 2 (SUZ12), PRC subunit (EED), and methylhion at histone 3 lysine 27, are upregulated in the MSL subtype (Fig. 1B).

To investigate which subtype is dysregulated by BRCA1/2 germline mutations associated with BRCAAness, we classified TCGA BRCA TNBC samples into our CMS and called germline mutations. Fifty-four cases in TCGA TNBC samples (\(n = 120 \)) belonged to SL type. Finally, 8 SL-type samples in total 16 pathogenic BRCA1/2 germline mutations were identified (Fisher test, \(P < 1.89e-07 \)). SL key pathways, G2-M checkpoint, MYC, mitotic spindle, and NOTCH activation in BRCA1/2 mutation samples resemble those shown in Fig. 1A (Supplementary Fig. S4; \(P < 2.13e-04 \)).

To investigate prognosis, we examined 10-year survival rates based on OS and MFS rates among CMSs. Survival test details are described in Supplementary Table S3. SL clearly presented poor MFS (median MFS = 5.9 years) and showed 2.53 times the HR (95% confidence interval (CI), 1.69–3.7; Fisher test, \(P = 5.40e-06 \)) compared with MSL, which had good prognosis (Fig. 1C). Moreover, high-grade patients were enriched in the SL subtype (44% of grade 3, \(x^2 \) test \(P = 5.10e-05 \)). The LAR subtype showed poor MFS as well as OS, consistent with the primary TNBC of the Curtis 2012 dataset METABRIC project (Fig. 1C), and the patients with LAR subtype also rapidly relapsed in line with the SL subtype (median MFS = 4.9 years) and had 1.5 times the ratio of risk than the MSL group (95% CI, 1.03–2.37; Fisher test \(P = 0.03 \); ref. 42). The MSL and IM groups presented relatively good prognosis in terms of both MFS and OS.

Comparison between primary and metastatic TNBC

We investigated the unique features between primary and metastatic TNBC. Metastasis samples (37%; \(n = 356 \)) were originated from primary TNBC and derived from several tissues, including skin, liver, lung, and brain (Table 1). When clustering all samples, key pathways shared with primary TNBC also discriminated metastasis into four subtypes (Fig. 1A). Proportions of SL and LAR subtypes were increased in metastasis (SL 35%, LAR 35%) compared with primary TNBC (SL 30%, LAR 28%), and the remaining two subtypes in metastasis were relatively decreased. Meanwhile, tissue types of metastatic samples were independent with CMS confirmed by the \(x^2 \) test.

To characterize the functional difference between primary cases and metastasis, we first found 734 DEGs (adjusted \(P < 0.001 \)) and revealed the biological pathways that were enriched in DEGs using ReactomeFI (Materials and Methods; Fig. 2). These genes were associated with complement and coagulation, IL6-mediated signaling, Toll-like receptors, TNF signaling, and JAK–STAT signaling pathways (\(P < 0.001 \); Fig. 2A). Serpin family E member 1 (SERPINE1) and fibroblast growth factor 1, implicated in metastasis (43, 44), were found to be involved in metastasis via EGFR and FGF signaling pathways and angiogenesis (Fig. 2A and C).

We established metastasis prediction models based on identified prognostic markers (Supplementary Fig. S5A). Metastasis prediction gene set was chosen using MFS test (\(P < 0.05 \); \(n = 84 \)) from 734 DEGs comparing primary with metastasis samples, and prediction model was established using random-forest machine-learning method (Supplementary Table S4). The model was validated by a 4-fold cross-validation (AUC 0.8; Supplementary Fig. S5B). Importantly, we report concordance index from these metastasis prediction gene sets (Fig. 2B). Among metastasis prediction genes, CIs were greater than 0.4 in FGF, JAK–STAT, and integrin signaling regulated by SHC adaptor protein 1 (SHC1), integrin subunit alpha M (ITGAM), vascular cell adhesion molecule 1 (VCAM1), integrin subunit alpha 1 (ITGA1), and jagged canonical Notch ligand 2 (JAG2; Supplementary Fig. S5C and S5D), SHC1 involved in FGF signaling and cell migration is used as a prognostic marker for cancer treatment (45). We show high concordance (\(c = 0.55; 95\% CI, 0.47–0.62 \)) of this gene, which was activated in metastasis (Fig. 2C). ITGAM (\(c = 0.48; 95\% CI, 0.44–0.53 \)) and ITGA1 (\(c = 0.52; 95\% CI, 0.48–0.58 \)) seem to enhance distance metastasis via integrin signal and coagulation cascading (Fig. 2A; Supplementary Table S5). JAG2 (\(c = 0.46; 95\% CI, 0.43–0.52 \)) was identified as a member of NOTCH signaling that promotes metastasis (Fig. 2C).

Pharmacogenomics landscape investigation by CMS

We established a pharmacogenomics landscape depending on CMS. Computational DR scores were calculated from 181 response or
resistance drug signatures from MSigDB. In total, 48 drugs of the 181 signatures extracted to overlap with breast cancer clinical trials. DR scores were estimated in both our aggregated data and biobank. We extracted final 18 DR scores of 17 drugs to indicate CMS specificity (ANOVA FDR < 0.05). Next, DR scores and correlated pathways ($\gamma > 0.65$) were extracted as network edges for each subtype (Fig. 3). DR score differences among our CMSs remarkably resemble with biobank (Supplementary Fig. S6A). Chosen 18 DRs to shown difference among CMSs acquired high CI and partially associated with clinical outcomes (Supplementary Fig. S6B). Adaphostin, doxorubicin, and bexarotene assigned SL type were ranked in top 3 concordance index (c) (≤ 0.58) and shown significant clinical outcomes (MFS P value $= 3.31E-05$). Trabectedin response of SL and ribavirin resistance and imatinib resistance of MSL were closely relevant to MFS. Tamoxifen resistance was significantly detected in LAR. Dasatinib, imatinib, and cisplatin were estimated to have the highest resistance scores in the MSL subtype (Fig. 3A), and the DR scores for these three drugs correlated strongly with the EMT and KRAS pathways (Fig. 3B). In particular, EMT activation led to cisplatin resistance by functionally shared genes such as cellular communication network factor 2 (CCN2), vimentin (VIM), cysteine-rich angiogenic inducer 61 (CYR61), and 5'-nucleotidase (NT5E; Fig. 3B). The genes involved in EMT activation are known to be associated with the therapeutic effect of cisplatin (46, 47). Ribavirin, an eIF4E inhibitor, has been suggested as a response drug in MSL subtype. The target gene is known to promote EMT and metastasis (Fig. 3A; ref. 48). Interestingly, our MSL drug-pathway network demonstrates that ribavirin inhibits TNFα and apoptosis pathways activated in MSL (Figs. 1A and 3B).

The LAR subtype appeared strongly high resistant score against tamoxifen and gefinitib, though androgen blockade was considered as a suitable therapy (Fig. 3A and B). As already known, AR promotes tamoxifen agonist activity. Our prediction shows a strong intervention in ER early response (Fig. 3B). In LAR network, the drug with the
Figure 3.
Overall status of functional interactions between DR and key pathway within each CMS. **A,** Boxplots of DR scores estimated from aggregated data, MSL, LAR, and SL, respectively. **B,** Interaction networks with drugs and key pathway to highly correlate \(r > 0.65 \) for each CMS. The subtype of each network is equally ordered within the boxplots. Square and circle nodes represent key pathways and drugs, respectively. Node colors of pathways indicate pathway activity scores. Red drug node indicates resistance signature and blue the response. The width of edges represents gene degree overlap in drug and pathway gene sets. Numbers on edge represent the greatest gene degree for each subtype. **C,** DR score heatmap estimated from the gene expression profiles of ROADMAP patients. **D,** PFS plot of ROADMAP patients that underwent cisplatin therapy. **E,** Two waterfall plots enumerating cisplatin resistance DR score estimated from the ROADMAP expression profiles colored based on CMS (left plot) and patients’ cisplatin response profiles (right plot). **F,** Cisplatin IC\(_{50}\) boxplot of 64 biobank TNBC cells for nonresponders (NR) and responders (R; left). Right boxplot is cisplatin resistance DR scores of NR and R from the biobank.
highest resistance, gefitinib, inhibits insulin-like growth factor 1 receptor (EGFR) signaling. Consequently, the LAR subtype shows significant fold change in EGFR expression (fold change = 8.38). On the other hand, trilbegum was identified as the only response drug that inhibits fatty acid oxidation (49). Fatty acid metabolism and adipogenesis pathways were activated across the MSL and LAR subtypes (Fig. 1A), but the response to trilbegum was more closely correlated to the LAR subtype.

The SL has shown resistance in doxorubicin, dasatinib, and fluorouracil treatment, but adaphostin, cisplatin, and trilbegum were responsible (Fig. 3A). E2F, G2M, and MYC targets 1 signal were positively correlated with doxorubicin resistance (Fig. 3B; Supplementary Fig. S6A). Cyclin B2 (CCNB2), extra spindle pole bodies like 1, separase (ESPL1), marker of proliferation Ki-67 (MKI67), and DNA topoisomerase 1 alpha (TOP2A) genes, involved in E2F and G2M pathways, induced drug resistance and showed high expression in SL. Generally, ESPL1 and TOP2A encode for topoisoeromerase or its binding partner, and the genes' topoisoeromerase activity is known to trigger doxorubicin resistance (50).

In addition, to examine cisplatin efficacy in genomic unstable samples, we calculated CIN scores for each of these cases. Genomic unstable cases of high CIN scores were classified as unstable cases (Fig. 4A). Cyclin B2 (Supplementary Fig. S7A). Cyclin B2, G2M, and MYC targets were positively correlated with cisplatin resistance (51). Interestingly, biobank data show that the GSK3 inhibitor SB216763 responds not only to IM, but also to partial LAR and SL subtypes (Supplementary Fig. S7; response surface pathway to be enriched among the 847 DR-related DEGs (52). We next explored cisplatin response markers for the prognosis of DFS based on the expression of genes, such as E2F transcription factor 1 (E2F1), metastasis associated 1 (MTA1), plakophilin 1 (PKP1), and microtubule nucleation factor (TPX2). Upregulation of these four genes, characterized by shorter response times, indicated poor prognosis (P < 0.04; Supplementary Fig. S8C) and was also consistent with our aggregated data (Supplementary Fig. S8D).

Discussion

Through this study, we proposed four TNBC subtypes using an integrative expression profile. The robustness of the classification was validated using several gene signatures and a machine-learning method (Supplementary Fig. S1). In our classification, the absence of DNA variant evidence could be a limitation, but tumorigenic functions by variants could be inferred from transcriptional consensus change (21, 26). For example, BRCA1/2

Table 2. Molecular subtype and clinical summary of ROADMAP patients.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>MSL N (%)</th>
<th>LAR N (%)</th>
<th>IM N (%)</th>
<th>SL N (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples</td>
<td>4</td>
<td>12</td>
<td>1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50 y</td>
<td>3 (75)</td>
<td>5 (41.7)</td>
<td>—</td>
<td>10 (47.6)</td>
<td>0.67</td>
</tr>
<tr>
<td>≥50 y</td>
<td>1 (25)</td>
<td>7 (58.3)</td>
<td>1 (100)</td>
<td>11 (52.4)</td>
<td></td>
</tr>
<tr>
<td>Sample type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh frozen</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FFPE</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Metastases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No metastases</td>
<td>—</td>
<td>4 (33.3)</td>
<td>—</td>
<td>9 (42.9)</td>
<td>0.42</td>
</tr>
<tr>
<td>Metastases</td>
<td>4 (100)</td>
<td>8 (66.7)</td>
<td>1 (100)</td>
<td>12 (57.1)</td>
<td></td>
</tr>
<tr>
<td>Number of chemo before biopsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>5 (23.8)</td>
<td>9 (42.9)</td>
<td>0.87</td>
</tr>
<tr>
<td>≥2</td>
<td>1 (25)</td>
<td>5 (41.7)</td>
<td>—</td>
<td>7 (35.3)</td>
<td></td>
</tr>
<tr>
<td>Cisplatin response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>1 (25)</td>
<td>7 (58.4)</td>
<td>1 (100)</td>
<td>7 (35.3)</td>
<td>0.04</td>
</tr>
<tr>
<td>Nonresponse</td>
<td>3 (75)</td>
<td>1 (8.3)</td>
<td>—</td>
<td>11 (52.4)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>—</td>
<td>4 (33.3)</td>
<td>—</td>
<td>3 (14.3)</td>
<td></td>
</tr>
<tr>
<td>Survival status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alive</td>
<td>—</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>0.15</td>
</tr>
<tr>
<td>Dead</td>
<td>3</td>
<td>5</td>
<td>—</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Genes involved in cisplatin resistance were identified in ROADMAP using the DEG set and GSEA analysis (Supplementary Table S7). We found SL- and MSL-related pathways such as mitosis pathways, DNA damage bypass, Wnt signaling pathway, and Betal integrin cell surface pathway to be enriched among the 847 DR-related DEGs (P < 0.0018; Supplementary Table S8). We next explored cisplatin response markers for the prognosis of DFS based on the expression of genes, such as E2F transcription factor 1 (E2F1), metastasis associated 1 (MTA1), plakophilin 1 (PKP1), and microtubule nucleation factor (TPX2). Upregulation of these four genes, characterized by shorter response times, indicated poor prognosis (P < 0.04; Supplementary Fig. S8C) and was also consistent with our aggregated data (Supplementary Fig. S8D).
mutation could be related to the SL subtype activated in pathways associated with cell cycle (54). Our pathogenic BRCA1/2 enrichment in SL was consistent with Lehmann’s identification in BL1 and BL2 (5). Meanwhile, our results also summarized key pathways specific to subtypes encompassing primary and metastatic TNBC. These consensus key pathways are in accordance with previous investigations on the ES signature of aggressive breast cancer from glioma and bladder tumor (25).

We investigated precise stenness using various computational approaches like machine-learning (Fig. 1C, left) or ES cell signature scoring regulated by transcription factor target gene set (Fig. 1C, right). ES cell signatures showed more enriched results in the SL subtype, indicating that transcription factors SOX2, OCT4, and NANOG play a critical role in proliferation (25). However, MYC target activation was unrestricted in the SL type differently than in a previous report (25). MYC-amplified samples except the SL type existed in the IM subtype. In another study, MYC reduction induced the downregulation of CD47 and PD-L1 in mouse and human cells, which was in line with our results (55). Therefore, we infer that MYC upregulation is involved across the SL and IM types. Meanwhile, we suggested another regulator, PRC2, which was known to be exclusively activated in nonstemness samples (25). We specifically revealed mutual exclusiveness of PRC2 targets between SL and MSL, and this finding narrows down a PRC2 complex inhibitor target (56).

Cellular heterogeneity and tumor progenitors of TNBC could be elucidated from various cells in the breast tissue microenvironment. Based on our cell abundance results, the proliferative characteristics of SL seem to be originated from luminal progenitor cells (Fig. 1C). In a previous study, BRCA1/2 defective tumor samples originated from luminal progenitors (10). As already described, the SL is the closest to BRCA1/2 deficiency. Therefore, our hypothesis is consistent with a previous study that reported that BRCA1/2 mutation frequently occurred in TNBC that originated from luminal progenitor and not from basal stem cells. Another study has shown that adipocytes induce EMT in breast cancer cells (57), which was relevant to our results that adipocytes were enriched in the MSL subtype (Fig. 1C). Thus, our cell abundance analysis indicates the specific progenitor or interaction with other cells in the microenvironment, which could be involved in tumorigenic biological functions.

We successfully established metastasis prediction machine-learning models using 84 DEG gene set to compare between primary and metastasis, and the genes could be considered as prognostic markers. The metastasis prediction gene set was enriched in coagulation, cell migration, and cell–cell interaction required for enhancing metastasis (45). Especially, one of the identified genes, SHC1, regulates apoptosis and drug resistance in mammalian cells and is essential for tumor progression and metastatic spread in breast cancer mouse models (54).

Our computational DR estimated from the expression profile successfully recapitulated the comprehensive characteristics of functional intervention and drug target. Cisplatin response markers of SL subtype, E2F1, MTA1, PKP1, and TPX2 are discriminated in PPS and MFS (Supplementary Fig. S8). We suggest that these four genes could emerge as important drug resistance predictors. Despite the limited patient expression profiles in ROADMAP data, we successfully predicted high cisplatin resistance score in MSL, whereas the LAR subtype was associated with good outcome (Fig. 3E). Further, we identified several candidate drugs that could intervene with key pathways activated in each subtype: apilidin, TZDs, and ribavirin for the MSL subtype by inhibiting EMT and metastasis (58, 59), cisplatin and trabectedin for SL-type cases with defective DNA-repair machinery (60). Such approach is useful to perform preclinical prediction. Additional evaluation using biobank data further confirmed our data on cisplatin resistance and ribavirin response in MSL (Supplementary Fig. S6). Interestingly, the proportion of IM subtype (4.2%) in biobank is lesser than the CMS analysis dataset (12.9%), and it overlaps with some LAR and SL samples with respect to GSK3 inhibitor SB216763 response (Supplementary Fig. S6). It suggests that partial IM samples are predicted to LAR and SL. We infer that this limitation originates from artificial reconstruction of TME for organoid culture system. In spite of TME change in organoid culture, partial patients show consistent DR in GSK3 inhibitor consistently with fresh-frozen samples of our aggregated dataset.

In summary, we defined TNBC CMS encompassing primary and metastasis tumors using large-scale expression profiles. Our CMS recapitulated in-depth genomic function and microenvironment heterogeneity. Particularly, we propose the abundance of mammary gland cells as a marker for tumorigenic origin and prognosis. Further, our computational approach to estimate DR was remarkably consistent with patients’ responses to cisplatin and drug screening of biobank organoid models. Therapeutic candidates for each CMS were suggested with pathway intervention. Thus, our study identifies molecular subtypes and provides a basis for relevant diagnostic and prognostic markers. Finally, our systematic computational approach suggests a potential to complement TNBC and DR study.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: I.H. Park, C. Park
Development of methodology: D. Yu
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J. Kim, Y. Kwon, K.S. Lee, S.H. Sim, S.Y. Kong, E.S. Lee, I.H. Park
Analysis and interpretation of data (e.g., statistical analysis, bioinformatics, computational analysis): J. Kim, D. Yu, K.S. Lee, S.H. Sim, C. Park
Writing, review, and/or revision of the manuscript: J. Kim, Y. Kwon, K.S. Lee, I.H. Park
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): I.H. Park, C. Park
Study supervision: I.H. Park, C. Park

Acknowledgments
This research was supported by the National Cancer Center Grant (NCC-1611150, NCC-1901080) and the National Research Foundation of Korea (NRF, NRF-2018R1C1B6001475).

We would like to acknowledge the patients with TNBC and the clinical help obtained for the ROADMAP project. TNBC gene expression meta-data were derived from GEO and ROADMAP next-generation sequencing files have been deposited in NCBI SRA accession SRP156081. Our TNBC classification approach is provided as an R package in Bioconductor (https://bioconductor.org/packages/devel/bioc/html/TNBC.CMS.html).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 30, 2019; revised July 15, 2019; accepted November 4, 2019; published first November 8, 2019.
Kim et al.

References

14. 7. published online first on December 29, 2021. © 2020 American Association for Cancer Research. mcr.aacrjournals.org Downloaded from

15. 8. Mol Cancer Res; 18(2) February 2020

16. 9. MOLeCULAR CANCER RESEARCH

17. 10. Published OnlineFirst November 8, 2019; DOI: 10.1158/1541-7786.MCR-19-0453