MOLECULAR CANCER RESEARCH

TABLE OF CONTENTS

HIGHLIGHTS

183 Selected Articles from This Issue

MINIREVIEW

185 An Emerging Regulatory Role for the Tumor Microenvironment in the DNA Damage Response to Double-Strand Breaks
Tshering D. Lama-Sherpa and Lalita A. Shevde

CANCER GENES AND NETWORKS

194 SRSF2 Regulation of MDM2 Reveals Splicing as a Therapeutic Vulnerability of the p53 Pathway
Daniel F. Comiskey Jr, Matías Montes, Saffiha Khurshid, Ravi K. Singh, and Dawn S. Chandler

204 UBE2C Is Upregulated by Estrogen and Promotes Epithelial–Mesenchymal Transition via p53 in Endometrial Cancer
Yan Liu, Rong Zhao, Shuqi Chi, Wei Zhang, Chengyu Xiao, Xing Zhou, Yingchao Zhao, and Hongbo Wang

216 Dominant-Negative ATF5 Compromises Cancer Cell Survival by Targeting CEBPB and CEBPD
Xiaotian Sun, Parvaneh Jefferson, Qing Zhou, James M. Angeliastro, and Lloyd A. Greene

229 Mesothelin Enhances Tumor Vascularity in Newly Forming Pancreatic Peritoneal Metastases
Leela Rani Avula, Michael Rudloff, Salma El-Behaedi, Danielle Arons, Rakan Albawazy, Xiongfong Chen, Xianyu Zhang, and Christine Alewine

240 Capping Protein Regulator and Myosin 1 Linker 3 Is Required for Tumor Metastasis
Huan Wang, Chao Wang, Guang Peng, Doudou Yu, Xin-Gang Cui, Ying-Hao Sun, and Xiaojing Ma

253 Genomic Characteristics of Triple-Negative Breast Cancer Nominate Molecular Subtypes That Predict Chemotherapy Response
Jihyun Kim, Doyeong Yu, Youngmee Kwon, Keun Sook Lee, Sung Hoon Sim, Sun-Young Kong, Eun Sook Lee, In Hae Park, and Charny Park

264 Lysine-Specific Demethylase 1 Mediates AKT Activity and Promotes Epithelial-to-Mesenchymal Transition in PIK3CA-Mutant Colorectal Cancer
Samuel A. Miller, Robert A. Policastro, Sudha S. Savant, Shruthi Sriramkumar, Ning Ding, Xiaoyu Lu, Helai P. Mohammad, Sha Cao, Jay H. Kalin, Philip A. Cole, Gabriel E. Zentner, and Heather M. O’Hagan

CANCER "-OMICS"

278 EZH2 Loss Drives Resistance to Carboplatin and Paclitaxel in Serous Ovarian Cancers Expressing ATM
Johanna Naskou, Yvonne Beiter, Ruan van Rensburg, Ellen Honisch, Martina Rudelius, Martin Schlensoog, Julia Gottstein, Larissa Walter, Elena I. Braicu, Jalid Sehouli, Silvia Darb-Enfahani, Annette Staebler, Andreas D. Hartkopf, Sara Brucker, Diethelm Wallwiener, Ines Beyer, Dieter Niederacher, Tanja Fehm, Markus F. Templin, and Hans Neubauer

CELL FATE DECISIONS

287 NME2 Is a Master Suppressor of Apoptosis in Gastric Cancer Cells via Transcriptional Regulation of miR-100 and Other Survival Factors
Yi Gong, Geng Yang, Qi Zhi Wang, Yumeng Wang, and Xiaobo Zhang

NEW HORIZONS IN CANCER BIOLOGY

300 Combined Exosomal GPC1, CD82, and Serum CA19–9 as Multiplex Targets: A Specific, Sensitive, and Reproducible Detection Panel for the Diagnosis of Pancreatic Cancer
Dong Xiao, Zhanjun Dong, Linqing Zhen, Guanggui Xia, Xinyu Huang, Tiezhong Wang, Huaiben Guo, Binhuai Yang, Cheng Xu, Weiwei Wu, Xiaoyu Zhao, and Hong Xu
TABLE OF CONTENTS

RNA BIOLOGY

311 **miR-29a Is Repressed by MYC in Pancreatic Cancer and Its Restoration Drives Tumor-Suppressive Effects via Downregulation of LOXL2**

Shatovisha Dey, Jason J. Kwon, Sheng Liu, Gabriel A. Hodge, Solaema Taleb, Teresa A. Zimmers, Jun Wan, and Janaiah Kota

SIGNAL TRANSDUCTION AND FUNCTIONAL IMAGING

324 **Glutamine Deprivation Induces PD-L1 Expression via Activation of EGFR/ERK/c-Jun Signaling in Renal Cancer**

Guofeng Ma, Ye Liang, Yuanbin Chen, Liping Wang, Dan Li, Zhijuan Liang, Xiao Wang, Dongxu Tian, Xuecheng Yang, and Haitao Niu

ABOUT THE COVER

Lysine-specific demethylase 1 (LSD1) is a known regulator of epigenetic marks throughout the genome, but new data from Miller and colleagues have revealed a new, non-catalytic role for LSD1 in regulating AKT activation in colorectal cancer cells. The cover depicts a chromatin immunoprecipitation-massively parallel DNA sequencing (ChIP-seq) heatmap demonstrating the global abundance of histone 3 bearing dimethylated lysine 4 (H3K4me2) throughout the genome of colorectal cancer cells. LSD1 knockdown in colorectal cancer cells had little effect on global H3K4me2 distribution and AKT pathway modulation was not explained by a change in H3K4me2 signal, thus suggesting an alternative mechanism underlying the observation. For more information, see the Highlight on page 183 and the article on page 264.