Molecular Cancer Research

Table of Contents

Highlights

1. Selected Articles from This Issue

Review

 Puregmaa Khongorzul, Cai Jia Ling, Farhan Ullah Khan, Awais Ullah Ihsan, and Juan Zhang

Minireview

20. Treating Cancer as an Invasive Species
 Javad Noorbakhsh, Zi-Ming Zhao, James C. Russell, and Jeffrey H. Chuang

Cancer Genes and Networks

33. Centrosome Amplification in Cancer Disrupts Autophagy and Sensitizes to Autophagy Inhibition
 Ryan A. Denu, Gulpreet Kaur, Madilyn M. Sass, Aparna Lakkaraju, and Mark E. Burkard

46. A TFAP2C Gene Signature Is Predictive of Outcome in HER2-Positive Breast Cancer
 Vincent T. Wu, Boris Kiriazov, Kelsey E. Koch, Vivian W. Gu, Anna C. Beck, Nicholas Borcherding, Tiandao Li, Peter Addo, Zachary J. Wehrsman, Weizhou Zhang, Terry A. Braun, Bartley J. Brown, Vimla Band, Hamid Band, Mikhail V. Kulak, and Ronald J. Weigel

Cancer "-omics"

57. Epigenetic Profiling Identifies LIF as a Super-enhancer-Controlled Regulator of Stem Cell-like Properties in Osteosarcoma
 Bing Lu, Yangyang He, Jincan He, Li Wang, Zhenguo Liu, Jiayan Yang, Zhuoxing Gao, Guohao Lu, Changye Zou, and Wei Zhao

Cell Fate Decisions

68. ELF4 Is a Target of miR-124 and Promotes Neuroblastoma Proliferation and Undifferentiated State

79. A TAZ-ANGPTL4–NOX2 Axis Regulates Ferroptotic Cell Death and Chemoresistance in Epithelial Ovarian Cancer
 Wen-Hsuan Yang, Zhiqing Huang, Jianli Wu, Chien-Kuang C. Ding, Susan K. Murphy, and Jen-Tsan Chi

91. Inhibition of the ATR–CHK1 Pathway in Ewing Sarcoma Cells Causes DNA Damage and Apoptosis via the CDK2-Mediated Degradation of RRM2
 Stacia L. Koppenhafer, Kelli L. Goss, William W. Terry, and David J. Gordon

Metabolism

105. Targeting the Kynurenine Pathway for the Treatment of Cisplatin-Resistant Lung Cancer
 Dan J.M. Nguyen, George Theodoropoulos, Ying-Ying Li, Chunjing Wu, Wei Sha, Lynn G. Feun, Theodore J. Lampidis, Niramol Savaraj, and Medhi Wangpaisit
NEW HORIZONS IN CANCER BIOLOGY

118 **Network Inference Analysis Identifies SETDB1 as a Key Regulator for Reverting Colorectal Cancer Cells into Differentiated Normal-Like Cells**
 Soobeom Lee, Chansu Lee, Chae Young Hwang, Dongsan Kim, Younghyun Han, Sung Noh Hong, Seok-Hyung Kim, and Kwang-Hyun Cho

130 **Neoadjuvant Chemotherapy Shifts Breast Tumor Microbiota Populations to Regulate Drug Responsiveness and the Development of Metastasis**

RNA BIOLOGY

140 **RAIN Is a Novel Enhancer-Associated lncRNA That Controls RUNX2 Expression and Promotes Breast and Thyroid Cancer**
 Teresa Rossi, Mariaelena Pistoni, Valentina Sancisi, Giulia Gobbi, Federica Torricelli, Benedetta Donati, Salvatore Ribisi, Mila Gugnoni, and Alessia Ciarrocchi

TUMOR MICROENVIRONMENT AND IMMUNOBIOLOGY

153 **IL8 Expression Is Associated with Prostate Cancer Aggressiveness and Androgen Receptor Loss in Primary and Metastatic Prostate Cancer**
 Janielle P. Maynard, Onur Ertunc, Ibrahim Kulac, Javier A. Baena-Del Valle, Angelo M. De Marzo, and Karen S. Sfanos

166 **PRMT6 Promotes Lung Tumor Progression via the Alternate Activation of Tumor-Associated Macrophages**
 Sreedevi Avasarala, Pei-Ying Wu, Samia Q. Khan, Su Yanlin, Michelle Van Scoyk, Jianjiang Bao, Alessandra Di Lorenzo, Odile David, Mark T. Bedford, Vineet Gupta, Robert A. Winn, and Rama Kamesh Bikkavilli

ABOUT THE COVER

During the process of tumorigenesis, differentiated cells progressively acquire changes to their gene expression program that drive the cell toward a malignant, stem cell-like state. The precise mechanisms underlying these changes are poorly defined, though it can generally be said that de-differentiation primarily occurs through the loss or inactivation of cell lineage factors. In this issue, Lee and colleagues detail new insights into the molecular mechanisms regulating the differentiation states of colorectal cancer cells. They further suggest possible avenues to reprogram tumor cells into a nonmalignant post-mitotic state by overcoming the epigenetic barrier to the differentiated state, as depicted conceptually on the cover. For more information, see the Highlight on page 1 and the article on page 118.