
















changes obtained from the mouse Nfkbiz deficiency experiment
(Supplementary Table S3). The patients with pancreatic cancer
with high index had significantly worse prognosis withHR¼ 1.76
and P¼ 0.006 (Fig. 7B). A similar relation of high indexwith poor
prognosis was detected in the TCGA LUAD (Fig. 7C) dataset with
HR ¼ 1.67 and P ¼ 0.002, but the relationship with TCGA LUSC
was not significant (Fig. 7D). This difference could imply spec-
ificity for RAS mutations or RAS dependence for oncogenesis.

Because high index represents higher expression of genes normal-
ly repressed by IkBz in RAS keratinocytes, it implies that those
patient tumors with poor prognosis have lower IkBz activity. One
possible cause for the lower IkBz activity is a significant reduction
of NFKBIZ expression with increasing tumor stage in COAD
(Supplementary Fig. S2A). For human skin cancer, although
based on a small population size, the trend to cancer progression
and reduced NFKBIZ expression is also detected in two indepen-
dent studies of human cutaneous cancers progressing through
normal, actinic keratosis, and squamous cell cancer (Supplemen-
tary Fig. S2B).

Discussion
A pathway to tumor promotion unveiled

The studies reported here propose a model by which a tissue-
restrained oncogenic RAS-initiated epithelial cell establishes and
responds to a microenvironment conducive to selective clonal
outgrowth of transformed cells (Supplementary Fig. S3).
Although presented in the context of skin, it is likely that
tissue-constrained–initiated cells in multiple internal epithelia
require altered tissue homeostasis via inflammation, hormones,
injury to proliferate unimpeded by neighboring cells, or tissue
architecture. All these stimuli are tumor-promoting factors. The
emerging importance of IL17 as a mediator of tumor growth at
multiple organ sites (15–20) supports the broader implications of
these results. This analysis has also provided a roadmap for the
events that follow the introduction of IL17-producing cells into
the tumor microenvironment through the chemo-attractive con-
sequences of RAS oncogenic activation of NF-kB and IkBz sig-
naling and the consequences of applying tumor-promoting
agents to initiated skin. IL17, through IkBz signaling, produces
selective transcriptional changes in normal and incipient tumor
cells, amplifying the signals coming from the promoting agent
and encouraging the clonal expansion and outgrowth of RAS-
initiated cells. Because RAS-initiated keratinocytes, unlike normal
keratinocytes, are inherently resistant to terminal differentia-
tion (45), they have the advantage of vertical growth to form
visible papillomas. Of relevance to these observations, papillo-
mas at high risk for malignant conversion that emerge first from
promoted initiated skin, expressed higher levels of IL17 in tran-
scriptional profiles than papillomas at low risk for malignant
conversion (46).

Signaling through MyD88/NF-kB is essential for tumor
promotion

A requirement for MyD88 signaling in experimental cutane-
ous squamous carcinogenesis has been previously documen-
ted (6, 8, 12) with a focus on tumor cell–autonomous func-
tions. We now show a requirement for intact MyD88 signaling
in the host, at both the target tissue independent of incipient
tumor cells and in hematopoietic-derived cells remote from the
site of tumor formation. Locally, the MyD88-dependent release
of IL1a and CCL4 are good candidates to attract Th17 cells to
the tumor microenvironment. Chung and colleagues (47) have
documented a requirement for IL1a to induce the polarization
of Th17 cells in the T-cell population, to maintain that phe-
notype and in combination with TGFb and IL6 to elevate the
production of IL17 by these cells. Deletion of the IL1R from
T cells reduces tumor formation in skin supporting a crucial
distant function for IL1/IL1R signaling in skin carcinogenesis

Figure 4.

IL17 enhances transcription of downstream effectors in mouse keratinocytes
with endogenous mutant Ras activation and human keratinocytes
transformed by humanmutant RAS. A, Real-time PCR quantification of
mRNAs from GFP and Cre adenovirus-transduced LSL-HrasG12D mouse
keratinocytes stimulated with IL17. B, Real-time PCR quantification of mRNAs
from GFP, mutant HRASG12V, and KRASG12V lentivirus-transduced human
keratinocytes. C, Real-time PCR quantification of mRNAs from GFP and
mutant HRASG12V lentivirus-transduced human keratinocytes treated with
human IL17A. ForA–C, � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001.
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Figure 5.

TPA, IL17, and the RAS oncogene are dependent on IkBz signaling for induction of tumor-promoting transcripts and tumor formation in vivo. Tritiated thymidine
incorporation was measured inWT or Nfkbiz�/� normal keratinocytes treated with IL17 for 24 hours (A) or RAS-transduced keratinocytes (B). Bars represent the
mean� SEM value of four replicates. C, Total SDS cell extracts from Nfkbizþ/� and Nfkbiz�/� keratinocytes were immunoblotted with specific antibodies
recognizing K1 and K10 from cultures under basal (0.05 mmol/L Caþþ) conditions or treated with IL17 under differentiating conditions (0.12 mmol/L Caþþ). Real-
time PCR quantification of mRNAs from Nfkbizþ/� and Nfkbiz�/� keratinocytes treated for 1, 3, 6, and 12 hours with IL17 (D) or fromWT or Nfkbiz�/� normal
keratinocyte treated with TPA (E) or from control and RAS-transducedWT and Nfkbiz�/� keratinocytes (F). Symbols represent the mean� SEM value of three
replicates. G, Immunoblotting of nuclear extracts from control and RAS-transducedWT and Nfkbiz�/� keratinocytes. Arrow head denotes specific band. H,
Primary keratinocytes Nfkbizþ/� or Nfkbiz�/�were transduced with a retrovirus expressing oncogenic RAS and grafted together withWT dermal fibroblasts
onto the backs of athymicmice. Each dot represents mean volume of individual tumors at day 20 postgrafting. Data shown represent two independent
experiments and are reported as mean� SEM. For all panels: � , P < 0.05; �� , P < 0.01; ���, P < 0.001; ���� , P < 0.0001.
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Figure 6.

The RAS transcriptome is dependent on IkBz. A, Heatmap visualization of relative expression of the top 82 genes whose expression is altered by at least 2-fold
when comparing RAS-keratinocytes Nfkbizþ/þwith RAS keratinocytes Nfkbiz�/�. Genes are ordered by fold change. B, GSEA enrichment plots are shown for
top-enriched or top-depleted gene sets in RAS-transduced Nfkbiz�/� keratinocytes. The black line is the running enrichment score calculated along the ranked
gene list; the vertical light blue bars in the plot indicate the position of the genes from the respective gene set. Supplementary Table S4 lists all GSEA estimates
for these gene sets, including "leading edge" genes. C,Network visualization of top-enriched functional gene sets fromMSigDB collections (GSEA FDR < 5.0%) in
RAS-transduced Nfkbiz�/� keratinocytes. Network nodes represent subsets of the enriched gene sets including GSEA core enriched genes ("leading edge") and
are shown in blue and red for gene sets underexpressed and overexpressed in the RAS-transduced Nfkbiz�/� keratinocytes, respectively. Edges in the network
represent mutual overlap of genes between the gene sets and the thickness of an edge is proportional to the combined similarity coefficient, ranging between
0.375 to 1.0. Supplementary Table S4 contains the underlying network data.
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(Supplementary Fig. S1). This connection of MyD88, IL1a and
IL17 in cutaneous biology was previously seen in autoimmune
cutaneous inflammation induced by deletion of Foxp3, where
elevated cutaneous IL17, IL1a and skin inflammation are
corrected by crossing Foxp3-null mice with Myd88-null
mice (48). Similarly, deletion of IL1R in T cells prevented the
protumorigenic cytokines IL17A and IL22 expression in a
colorectal cancer mouse model (49).

Recruitment of Th17 cells and release of IL17 in the skin
microenvironment are essential for tumor formation

In our study, the targeted deletion of MyD88 in T cells reduced
the infiltration of CD4þ cells in TPA-treated skin, indicating that
signals from skinwere activatingNF-kB in T cells to stimulate their
migration, and transcriptional profiling alerted us to the specific
deficiency in IL17 signaling. Previous studies have documented
that directly deleting Il17 or the Il17r gene encoding its receptor

Figure 7.

IkBz-dependent RAS gene signature predicts disease free survival in COAD, PAAD, and LUAD. A, A 16-gene sum index from the most overexpressed genes in
RAS keratinocytes depleted ofNfkbizwas used to divide patients with COADwith high- and low-index groups to plot Kaplan–Meier curves. The patients with
high index had worse prognosis with HR¼ 3.6 (1.5–8.65) and log-rank P¼ 0.003. A 19-gene weighted sum index from the same profile was used to divide the
patients with PAAD (B), LUAD (C), and LUSC (D) with high- and low-index groups. The 16-gene set is a subset of the 19 genes and the weights used to compute
the index were log2-fold changes derived from Nfkbiz-dependent gene in mouse RAS keratinocytes (Supplementary Table S3). The patients with PAAD with high
index had worse prognosis with HR¼ 1.76 (1.13–2.74) and the log-rank P¼ 0.006. The patients with LUADwith high index had worse prognosis with HR¼ 1.67
(1.24–2.27) and the log-rank P¼ 0.002. But for the patients with LUSC, the high- and low-index groups had no significant difference in survival.
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from the mouse genome or targeted deletion of epidermal
Traf3ip2 (also known as Act1 or CISK), the adapter required
for IL17 signaling, reduced DMBA/TPA-induced skin tumors
(10, 13, 14). Supporting these preclinical findings in mice, the
tumor microenvironment surrounding human skin squamous
and basal cell carcinomas is abundant in CD4þIL17þ T cells (50).
Several previous studies have also reported that CD4þ T cells
contribute to skin carcinogenesis (37, 51, 52). Those studies
focused on T-cell extrinsic pathways to explore the basis for the
infiltration. By targeting the NF-kB pathway directly in CD4þ T
cells, we demonstrate the intrinsic requirements in the target
hematopoietic population that respond to the chemotactic sig-
nals emanating from the tissue targeted for tumor formation. This,
then, would appear to be the basic connection between the host
and the target tissue permissive for tumor development. Little
previous work on IL17 in the skin has focused on the differential
response of normal and incipient tumor cells other than to show
that recombinant IL17 can induce hyperplasia when injected
intradermally (14). We now demonstrate the powerful IL17
responses involved to produce hyperplasia (stimulated prolif-
eration and blocked differentiation of normal keratinocytes)
and the upregulation of multiple cytokines and chemokines
(normal and initiated keratinocytes) relevant for tumor erup-
tion. Unexpectedly, we now discover that some of these IL17
effects are mediated through IkBz signaling, and the conse-
quences of RAS transformation in keratinocytes, including
tumor formation, are strongly dependent on IkBz, independent
of IL17. In fact, exposure to IL17 elevates IkBz expression in
normal and RAS-initiated keratinocytes possibly creating a
feed-forward loop. Multiple reports indicate that IkBz has both
gene-activating and gene-suppressing effects in combination
with components of NF-kB.

IkBz contributes to multiple stages in tumor formation
Nfkbiz genetic deficiency inmice indirectly produces an inflam-

matory skin phenotype mimicking atopic dermatitis by inducing
skin dysbiosis and over-representation of the pathobiont Staph-
ylococcus xylosus (53, 54). GSEA from RNA profiling of RAS-
transformed IkBz heterozygous- and homozygous-deficient ker-
atinocytes confirms a diverse pattern of gene expression changes.
For example, the loss of key inflammatory mediators (e.g., S100
proteins) and modifiers of the extracellular matrix (e.g., MMPs
and TMPRSS) in RAS-initiated keratinocytes deficient in IkBz
could contribute to the reduction of tumor formation. These
factors released from initiated cells enhance a receptive microen-
vironment for tumor formation in the skin. While these enrich-
ment studies were performed in mouse keratinocytes, the high
associationwith datasets frommultiple gene expression studies in
other organ sites (MSigDB) suggest that IkBz is an active partic-
ipant in RAS-related carcinogenesis in general. GSEA also revealed
that IkBz-mediated transcriptional regulation suppresses IFN-

responsive genes in RAS-transformed keratinocytes, a function
that could influence tumor growth through effects on immune
modulation. While both tumor cell–autonomous and microen-
vironmental IkBz signaling are important for the early stages of
RAS-mediated tumor formation in mouse skin, the transcription-
al signature associated with the loss of IkBz signaling in RAS
transformation marks a poor prognosis for human patients with
cancer. This implies that during cancer progression, RAS-
transformed cells switch from amicroenvironmental-driven IkBz
dependency to more cell autonomy and alternative drivers. The
discovery of IkBz signaling as an integral component of cancer
pathogenesis, with particular relevance to cancers driven by
oncogenic RAS, warrants further study both as a therapeutic target
for early neoplastic lesions and a prognostic indicator of cancer
progression.
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