Mitotic DNA Synthesis Is Differentially Regulated between Cancer and Noncancerous Cells

Cari L. Graber-Feesl, Kayla D. Pederson, Katherine J. Aney, and Naoko Shima

Abstract

Mitotic DNA synthesis is a recently discovered mechanism that resolves late replication intermediates, thereby supporting cell proliferation under replication stress. This unusual form of DNA synthesis occurs in the absence of RAD51 or BRCA2, which led to the identification of RAD52 as a key player in this process. Notably, mitotic DNA synthesis is predominantly observed at chromosome loci that colocalize with FANCD2 foci. However, the role of this protein in mitotic DNA synthesis remains largely unknown. In this study, we investigated the role of FANCD2 and its interplay with RAD52 in mitotic DNA synthesis using aphidicolin as a universal inducer of this process. After examining eight human cell lines, we provide evidence for FANCD2 rather than RAD52 as a fundamental supporter of mitotic DNA synthesis. In cancer cell lines, FANCD2 exerts this role independently of RAD52. Surprisingly, RAD52 is dispensable for mitotic DNA synthesis in noncancerous cell lines, but these cells strongly depend on FANCD2 for this process. Therefore, RAD52 functions selectively in cancer cells as a secondary regulator in addition to FANCD2 to facilitate mitotic DNA synthesis. As an alternative to aphidicolin, we found partial inhibition of origin licensing as an effective way to induce mitotic DNA synthesis preferentially in cancer cells. Importantly, cancer cells still perform mitotic DNA synthesis by dual regulation of FANCD2 and RAD52 under such conditions.

Implications: These key differences in mitotic DNA synthesis between cancer and noncancerous cells advance our understanding of this mechanism and can be exploited for cancer therapies.

Introduction

It is widely accepted that cancer development is closely associated with replication stress (1, 2). Studies have demonstrated that overexpression of certain oncogenes in cultured human cells induces replication stress by disturbing the normal kinetics of DNA replication, altering the usage of replication origins and fork speed (3, 4). Under such conditions, replication forks are more frequently stalled/collapsed relative to normal S phase, inducing DNA damage (5, 6). Consistent with these findings, human precancerous lesions in a wide range of tissues display markers of DNA damage and activated checkpoints (5–8). Although such responses act as an antitumorigenic barrier by triggering apoptosis or senescence of precancerous cells, a small fraction of cells eventually escape the barrier to progress cancer development (7, 9). It is also possible that precancerous cells develop mechanisms that counteract intrinsic replication stress to sustain their survival and proliferation.

Mitotic DNA synthesis (or abbreviated as MiDAS) may be one such mechanism, as it is strongly activated under replication stress (10, 11). This unusual timing of DNA synthesis is universally observed in a variety of mammalian cells after treatment with a low dose of aphidicolin (Aph), a replication inhibitor (10–14). After pulse labeling with EdU (5-ethynyl-2'-deoxyuridine), punctuated sites of mitotic DNA synthesis are observed at chromosome loci that colocalize with FANCD2 foci. However, the role of this protein in mitotic DNA synthesis remains largely unknown. In this study, we investigated the role of FANCD2 and its interplay with RAD52 in mitotic DNA synthesis using aphidicolin as a universal inducer of this process. After examining eight human cell lines, we provide evidence for FANCD2 rather than RAD52 as a fundamental supporter of mitotic DNA synthesis. In cancer cell lines, FANCD2 exerts this role independently of RAD52. Surprisingly, RAD52 is dispensable for mitotic DNA synthesis in noncancerous cell lines, but these cells strongly depend on FANCD2 for this process. Therefore, RAD52 functions selectively in cancer cells as a secondary regulator in addition to FANCD2 to facilitate mitotic DNA synthesis. As an alternative to aphidicolin, we found partial inhibition of origin licensing as an effective way to induce mitotic DNA synthesis preferentially in cancer cells. Importantly, cancer cells still perform mitotic DNA synthesis by dual regulation of FANCD2 and RAD52 under such conditions.

Implications: These key differences in mitotic DNA synthesis between cancer and noncancerous cells advance our understanding of this mechanism and can be exploited for cancer therapies.
underlying mechanism is largely unknown. The current model describes that mitotic DNA synthesis begins processing stalled replication forks with structure-specific endonucleases including MUS81 followed by DNA synthesis which requires POL3, a noncatalytic subunit of Polymerase delta (10, 11). Recently, RAD52 was identified as a key promoter of mitotic DNA synthesis in U2OS and HeLa cell lines due to its role in recruiting MUS81 in addition to its involvement in homologous recombination (HR; refs. 11, 31). Other HR proteins such as BRCA2 and RAD51 are dispensable for this process, as their absence enhances mitotic DNA synthesis in the presence/absence of Aph treatment (11, 32, 33). Sites of mitotic DNA synthesis are predominantly found at chromosome loci colocalizing with FANCD2 foci, which include specific loci known as common fragile sites (11, 13, 14, 34, 35). Importantly, RAD52 was dispensable for this process. These findings illustrate with FANCD2 foci, which include specific loci known as common fragile sites (11, 13, 14, 34, 35). Importantly, RAD52 was dispensable for this process. These findings illustrate how it was induced. In noncancerous cell lines (hTERT-RPE1, BJ-5ta, HDFn, and IMR90), we observed that Aph-induced mitotic DNA synthesis predominantly depends on FANCD2, as BRCA2 and RAD51 are dispensable for this process, as their absence enhances mitotic DNA synthesis in the presence of 300 nmol/L Aph (150 nmol/L for H1299, U2OS, HDFn, and IMR90 cell lines) for the last 24 hours of siRNA treatment. For immunoblots, cells were plated in 6-cm or 10-cm dishes for siRNA treatment to prepare whole-cell lysates. Control siRNA, siRAD52-B, siORC1, and siFANCA-A/B were purchased from Dharmacon (D-001210-01, D-011760-01, D-003283-06, and D-019283-19/20, respectively). siRAD52-A was purchased from Qiagen (S103035123). siFANCDB2-A (CAGAGUGUCAUGGUGACCAUCUAC) and -B (AACAGGUCAUGGAGAUCGACU) (38) were synthesized by Dharmacon and Qiagen, respectively. siPOLD3 (s21045) was purchased from thermo Fisher. Unless specified, siRAD52-A (siR32A) and siFANCDB2-A (siD2-A) were primarily used within the final concentrations of 30–60 nmol/L in this study.

Materials and Methods

Cell lines

The HCT116 cell line and its mutant derivatives (31, 37) were generously provided by Drs. Eric Hendrickson and Alex Sobeck at the University of Minnesota. These lines have been authenticated by these researchers in house. The H1299, U2OS, HeLa, hTERT-RPE1, BJ-5ta, HDFn, and IMR90 cell lines were purchased from ATCC between 2017 and 2018 and were cultured less than 8 weeks from frozen stocks of early passages (p2–p4) for this study. All cell culture media were purchased from Sigma-Aldrich, supplemented with 10% fetal bovine serum (FBS; Atlanta Biologicals), and penicillin-streptomycin (Thermo Fisher). Mycoplasma testing has not been performed on these cell lines. However, HCT116 and U2OS cells were cultured in McCoy’s 5A (M4043) additionally supplemented with Plasmocin (MycoPlasma elimination reagent, Invivogen) and GlutaMax (Thermo Fisher). H1299 cells were cultured in RPMI-1640 (R8758). RPE1 cells were cultured in DMEM/F12 (D6421) additionally supplemented with GlutaMax and 0.01% hygromycin B (Sigma). BJ cells were cultured in a 1:1 media mixture of DMEM (D6429) and Medium 199 (M4530) additionally supplemented with 0.01% hygromycin B. HDFn and Hela cells were cultured in DMEM (D6429). IMR90 cells were cultured in MEM (S1416C) additionally supplemented with Glutamax.

Small-interfering RNA (siRNA) transfection

For immuno-fluorescence staining, cells were seeded on coverslips in wells of 6-well plates. Next day, cells were treated with siRNA using Lipofectamine iRNNAX (Thermo Fisher) in Opti-MEM (Thermo Fisher) supplemented with 3% FBS. After 48 hours of incubation with siRNA, cells were washed with phosphate-buffered saline (PBS) and cultured in fresh media containing 20 μmol/L EdU (Lumiprobe) for 30 minutes before fixation with 10% formalin. When applicable, cells were cultured in the presence of 300 nmol/L Aph (150 nmol/L for H1299, U2OS, HDFn, and IMR90 cell lines) for the last 24 hours of siRNA treatment. For immunoblots, cells were plated in 6-cm or 10-cm dishes for siRNA treatment to prepare whole-cell lysates. Control siRNA, siRAD52-B, siORC1, and siFANCA-A/B were purchased from Dharmacon (D-001210-01, D-011760-01, D-003283-06, and D-019283-19/20, respectively). siRAD52-A was purchased from Qiagen (S103035123). siFANCDB2-A (CAGAGUGUCAUGGUGACCAUCUAC) and -B (AACAGGUCAUGGAGAUCGACU) (38) were synthesized by Dharmacon and Qiagen, respectively.

Immunofluorescent staining for FANCDB2 foci and EdU spots

Fixed cells on coverslips were first subjected to a Click-Chemistry Reaction (20 μmol/L Biotin-Azide, 10 mmol/L sodium ascorbate, and 2 mmol/L CuSO4 in PBS) at room temperature for 1 hour. After washing with PBS, cells were incubated with anti-FANCDB2 (abcam ab108928; 1:250) and anti-phospho-Histone H3 at Ser10 (Cell Signaling Technology; 9706S; 1:200) antibodies in PBS containing 0.3% Triton X-100 and 1% BSA at 4°C overnight. The next day, cells were washed with PBS and incubated with Alexa Fluor 488 Streptavidin (Thermo Fisher) for incubation on ice for 15 minutes. EdU spots and FANCDB2 foci were scored using a fluorescent microscopy Axios Imager A1 (Zeiss). Experiments were performed three times to score at least 200 cells per treatment/genotype. Obtained data were combined to determine the overall frequency of cells positive for EdU spots or >2 FANCDB2 foci per genotype/treatment. Significance between frequencies among different genotypes/treatments was determined by a χ2 test.

Immunoblotting

After trypsination and centrifugation, cells were resuspended in RIPA buffer (Sigma, R0278) supplemented with Pierce Protease Inhibitor (Thermo Fisher) for incubation on ice for 15 minutes. Cell lysates were then centrifuged at 10,000 × g for 20 minutes at 4°C to obtain supernatants. Prepared lysates were mixed with 4 × NuPAGE LDS Sample Buffer (Thermo Fisher) for separation on denaturing gradient gels (Novex Tris-Glycine 8%–10% or Tris-Acetate 3%–8%), which were transferred to Immobilon...
P membranes (Millipore). After blocking in 5% milk, membranes were incubated with primary antibodies at 4°C overnight. Subsequent incubation with horseradish peroxidase-conjugated rabbit secondary antibody (Jackson Labs) or mouse secondary antibody (Bio-Rad) occurred at room temperature for 1 hour. Protein bands were detected using Immobilon Western HRP Substrate (Millipore Sigma). Primary antibodies were used for immunoblotting at the following dilutions: anti-FANCD2 (ab108928, 1:2,000), anti-tubulin (ab7291, 1:100,000), and anti-vinculin (ab18058, 1:100,000), anti-POLD3 (Bethyl A301-244AM, 1:1,000) anti-RAD52 (Santa Cruz sc-365341, 1:750), anti-ORC1 (Sigma PLA0221, 1:2,000), and anti-FANCA (Cell Signaling 14657S, 1:1,000).

Metaphase spreads
Cells plated in 6-cm dishes were cultured for 2 days in normal media or treated with siRNAs for 48 hours before incubation with colcemid and 20 μmol/L EdU for 1 hour. Cells were then trypsinized for fixation with a 3:1 ratio of methanol to glacial acetic acid to prepare metaphase spreads as previously described (39). Metaphase spreads were subjected to the Click-Chemistry Reaction as described above before staining with 4′,6-diamidino-2-phenylindole (DAPI). Metaphase chromosomes were scored for EdU spots and gaps/breaks using the fluorescent microscope. Experiments were performed three times to score at least 120 metaphase cells per treatment/genotype. The average number of EdU spots and gaps/breaks

Figure 1. FANCD2 promotes mitotic DNA synthesis in addition to RAD52 in HCT116 cells. A, Immunoblotting to confirm the lack of FANCD2 and RAD52 in respective mutant lines (D2KO and R52KO) along with expression levels of these proteins in parental WT cells. Vinculin was used as a loading control. B, Representative images of phospho-H3–stained nuclei/chromosomes (blue), EdU spots (green), and FANCD2 (red) foci are displayed for each genotype. C, Percentage of early M-phase (prophase to prometaphase) cells positive for EdU spots (top) or >2 FANCD2 foci (bottom) in the presence/absence of Aph treatment for each genotype. D, Representative images of metaphase spreads that display Aph-induced EdU spots and/or gaps/breaks in each genotype. E, The average number of gaps/breaks for each genotype and those found at EdU spots per cell. F, The average number of EdU spots for each genotype. Error bars indicate standard deviations of respective frequencies in C and standard errors of means in E and F, respectively. **P < 0.001 by a χ² test in C and by a t test in E and F, respectively. Bars in microscope images in B and D, 10 μm. ND, none detected.
was determined for each genotype. Significance was determined by a t test.

Cell proliferation/colony formation assays
After 48 hours of incubation with siRNA, cells were trypsinized, and the number of live cells was counted by a trypan blue exclusion method using the Countess II Automated Cell Counter (Invitrogen). For colony formation assays, cells were then replated in 6-cm plates (600 cells/plate). Ten days later, colonies were fixed with 100% methanol, stained with Giemsa, and counted. Each assay was performed with triplicates per genotype/treatment and repeated three times. Significance between the average cell/colony numbers among different genotypes/treatments was determined by a t test.

Results
Mitotic DNA synthesis is promoted not only by RAD52 but also by FANCD2 in HCT116 cells
We made use of an HCT116-mutant cell line lacking RAD52 (R52KO; ref. 31) to understand the formation of EdU spots in the complete absence of RAD52 (see Fig. 1A). As spontaneous EdU spots are rarely observed in HCT116 cells regardless of genotype (Fig. 1C and 2B), we treated cells with Aph (300 nmol/L) for 24 hours followed by pulse labeling with EdU for 30 minutes before fixation. We scored early M-phase (prophase to prometaphase) cells positive for phosphorylated Histone H3 at Serine 10 for the presence of EdU spots, which were almost always found at loci containing FANCD2 foci (Fig. 1B). As shown in Fig. 1C, the vast majority (94.5% ± 1.6%) of parental HCT116 cells (refer to wild-type, WT) contained at least one EdU spot under this condition. In R52KO cells, the percentage of cells with EdU spots was slightly but significantly decreased to 78.5% ± 0.5%. Intrigued by this parallel decrease in FANCD2 foci (81.0% ± 2.8%) relative to WT cells (99.5% ± 0.5%), we noticed that the lack of RAD52 also caused a significant decrease in the number of EdU spots in HCT116 cells (99.5% ± 0.5%). As spontaneous EdU spots are rarely observed in HCT116 cells regardless of genotype (11), the average number of gaps/breaks per cell was substantially decreased in R52KO cells (6.9 ± 0.3), and only a small fraction of them were found at EdU spots (35.4%). Relative to WT cells, the average number of gaps/breaks per cell was significantly lower in D2KO cells (10.9 ± 0.5), and their percentage at EdU spots was also decreased (65.9%). It should be noted that the observed decreases in gaps/breaks in R52KO and D2KO cells were also correlated with a lower number of EdU spots per cell in these mutants compared with WT cells (Fig. 1F). Taken together, these findings reveal FANCD2 as a supporter of mitotic DNA synthesis in addition to RAD52 in HCT116 cells.

RAD52 and FANCD2 independently support the formation of EdU spots in HCT116 cells
As a next step, we wanted to test a functional interplay between RAD52 and FANCD2 in supporting mitotic DNA synthesis in HCT116 cells. To this end, we depleted RAD52 and FANCD2 in WT cells using siRNAs, which consistently caused a significant decrease in the number of cells with Aph-induced EdU spots in both cases (87.0% ± 1.9% for siRAD52, 87.3% ± 1.9% for siFANCD2) relative to control siRNA (siC)-treated conditions (96.3% ± 1.1%). Finally, we scored Aph-induced chromosome aberrations in WT, R52KO, and D2KO cells. Regardless of genotype, nearly all (>98%) cells exhibited Aph-induced gaps and/or breaks on metaphase chromosomes (Fig. 1D), so we analyzed the number of gaps/breaks per cell among the genotypes (Fig. 1E). On average, 13.2 ± 0.7 gaps/breaks were found per WT cell, and the majority (79.1%) were associated with EdU spots. Consistent with previous studies (11), the average number of gaps/breaks per cell was substantially decreased in R52KO cells (6.9 ± 0.3), and only a small fraction of them were found at EdU spots (35.4%). Relative to WT cells, the average number of gaps/breaks per cell was significantly lower in D2KO cells (10.9 ± 0.5), and their percentage at EdU spots was also decreased (65.9%). It should be noted that the observed decreases in gaps/breaks in R52KO and D2KO cells were also correlated with a lower number of EdU spots per cell in these mutants compared with WT cells (Fig. 1F). Taken together, these findings reveal FANCD2 as a supporter of mitotic DNA synthesis in addition to RAD52 in HCT116 cells.

Figure 2.
RAD52 and FANCD2 act in parallel in supporting EdU spot formation under ORC1 depletion in HCT116 cells. A, Immunoblotting to show depletion of ORC1 (top/bottom) in all genotypes and additional depletion of RAD52 and/or FANCD2 (bottom) in respective HCT116 genotypes. Tubulin was used as a loading control. A filled triangle indicates a nonspecific band detected by the RAD52 antibody. B, Percentage of early M-phase cells positive for EdU spots (top) or >2 FANCD2 foci (bottom) after ORC1 depletion in combination with RAD52 and/or FANCD2 depletion. Error bars indicate standard deviations of respective frequencies. * * * * , P < 0.001 by a χ² test; NA, not applicable; ND, none detected.
HCT116 cells. However, we were unable to do so with Aph treatment due to poor viability of R52KO and D2KO cells when FANCD2 or RAD52 was additionally depleted. Previously, we and others reported that partial depletion of MCM4 or MCM5 induces EdU spots in mouse or human cells without the use of Aph (12, 15). However, depletion of MCA4 strongly inhibited the proliferation of HCT116 as reported elsewhere (40), inducing EdU spots only in 12.7% ± 1.9% of surviving WT cells (Supplementary Fig. S2). Rather, we found that ORC1 depletion was far more efficient in inducing EdU spots in HCT116 cells, as the majority of WT cells were positive for EdU spots (70.3% ± 2.5%; Fig. 2A and B). Consistent with the data on Aph-induced EdU spots (Fig. 1), the lack of RAD52 or FANCD2 decreased the number of cells with EdU spots under this condition (34.6% ± 2.3% in R52KO, 51.3% ± 2.9% in D2KO, see Fig. 2B). Importantly, additional depletion of FANCD2 in R52KO cells substantially impaired the formation of EdU spots under ORC1 depletion (9.7% ± 1.7%). Codepletion of RAD52 with ORC1 in D2KO cells also had a similar inhibitory effect on the formation of EdU spots (32.0% ± 2.7%). Moreover, codepletion of RAD52 and FANCD2 caused a significant decrease of WT cells containing EdU spots under ORC1 depletion (45.3% ± 2.9%). Although it appears that RAD52 promotes mitotic DNA synthesis by supporting a full level of FANCD2 focus formation, these data collectively suggest that RAD52 and FANCD2 function independently of one another to promote EdU spot formation in HCT116 cells.

Multiple cancer cell lines also rely on both RAD52 and FANCD2 for mitotic DNA synthesis

Having found the dual regulation of mitotic DNA synthesis by RAD52 and FANCD2 in HCT116 cells, we wanted to test if this holds true for other cancer cell lines. In H1299 cells, a lung cancer cell line, Aph-induced EdU spots were observed in the vast majority of cells (93.9% ± 1.2%) under siC-treated conditions (Fig. 3B left). As shown in Fig. 3A and B, depletion of RAD52 by siR52-A caused a significant decrease in the number of cells containing EdU spots (76.5% ± 2.2%). Depletion of FANCD2

Figure 3. FANCD2 and RAD52 both support the formation of APH- and siORC1-induced EdU spots in H1299 cells. A, Immunoblotting (top) to show depletion of RAD52 and/or FANCD2. Immunoblotting (bottom) to show single depletion of POLD3 (left) or FANCA (right). B, Percentage of early M-phase cells positive for EdU spots (top) or >2 FANCD2 foci (bottom) per siRNA treatment after Aph treatment. C, Immunoblotting to show single depletion of ORC (left), and codepletion of RAD52 and/or FANCD2 with ORC1 (right). D, Percentage of early M-phase cells positive for EdU spots (left) or >2 FANCD2 foci (right) per siRNA treatment. In B and D, error bars indicate standard deviations of respective frequencies; †, P < 0.05; ††, P < 0.01; †††, P < 0.001 by a χ² test, respectively.
by siD2-A caused a sharp reduction in the number of cells with EdU spots (47.3% ± 2.9%). Codelpletion of RAD52 and FANCD2 by these siRNAs further decreased the number of cells with EdU spots than single depletion alone (28.6% ± 2.6%). Note that we also observed a significant decrease in cells with EdU spots when RAD52 or FANCD2 was depleted by siR52-B or siD2-B, respectively. We next investigated the role of FANCA in mitotic DNA synthesis, as this protein is involved in the monoubiquitination of FANCD2 as a member of the Fanconi core complex (41). Depletion of FANCA (done independently using two different siRNAs: siFA-A and siFA-B) significantly reduced the number of cells with EdU spots at a level comparable with POLD3 depletion or lower (Fig. 3B, right). Therefore, FANCD2 and FANCA both promote mitotic DNA synthesis in H1299 cells. Unlike HCT116 cells,
approximately one third of H1299 cells displayed basal EdU spots (30.9% ± 2.6%) in siC-treated conditions. Upon ORC1 depletion, EdU spots were detected in nearly all cells (96.4% ± 1.1; Fig. 3C and D). Induction of EdU spots was significantly suppressed by codepletion of RAD52 with ORC1 (72.3% ± 2.7%). Codepletion of FANCDD2 and ORC1 substantially decreased the formation of EdU spots (27.7% ± 1.7%). Codepletion of RAD52, FANCDD2, and ORC1 further decreased the number of cells with EdU spots (16.2% ± 2.1%). These data are consistent with the dual regulation of mitotic DNA synthesis by FANCDD2 and RAD52. We then examined U2OS and HeLa cells, which rely on RAD52 in promoting mitotic DNA synthesis (11). As shown in Supplementary Figs. S3 and S4, these cell lines also depend on FANCDD2 for mitotic DNA synthesis in addition to RAD52 regardless of how it is induced.

Noncancerous RPE1 cells rely on FANCDD2 but not on RAD52 for EdU spot formation

We then extended our investigations to noncancerous cell lines to understand if dual regulation of mitotic DNA synthesis is universal. We first used hTERT-RPE1 (RPE1), an hTERT-immortalized, noncancerous epithelial cell line. As shown in Fig. 4A and B, Aph treatment induced EdU spots in the majority of siC-treated RPE1 cells (77.7% ± 1.8%). Expectedly, depletion of POLD3 significantly decreased the number of cells with EdU spots compared with siC-treated conditions (54.9% ± 2.9%). To our surprise, depletion of RAD52 (done independently using two different siRNAs) did not cause any significant change in the frequency of EdU-positive cells (73.6% ± 2.4% for siR52-A, 77.0% ± 2.4% for siR52-B). However, FANCDD2 depletion (also done independently using two different siRNAs) consistently caused a significant decrease in the number of cells with EdU spots relative to siC-treated conditions (56.5% ± 3.3% for siD2-A, 53.0% ± 2.9% for siD2-B). Codepletion of RAD52 and FANCDD2 also decreased the number of cells with EdU spots to levels seen in conditions of FANCDD2 single depletion (53.6% ± 2.9%). These data suggest that mitotic DNA synthesis in RPE1 cells depends primarily on FANCDD2. To further verify this striking result, we constructed RAD52-deicient lines in RPE1 cells by genome editing (see Supplementary Methods). Consistent with RAD52 depletion by siRNAs, the absence of RAD52 in RPE1 cells did not cause any decrease in the number of cells with EdU spots (Fig. 4C and

Figure 5.

BJ cells rely on FANCDD2 but not on RAD52 for EdU spot formation. A, Immunoblotting to show single depletion of RAD52 (top left), FANCDD2 (top right), or ORC1 (bottom right) and double depletion of FANCDD2 and RAD52 (bottom left). B, Percentage of early M-phase cells positive for EdU spots (top) or ≥2 FANCDD2 foci (bottom) per siRNA treatment group in the presence/absence of Aph treatment. C, Distribution of cells having respective ranges of EdU spots (left) and FANCDD2 foci (right) per cell for each siRNA treatment. In A, a filled triangle indicates a nonspecific band detected by the RAD52 antibody. In B and C, error bars indicate standard deviations of respective frequencies; ***, P < 0.001 by a χ² test.
D). Depletion of FANC2 in R52KO7, one of the R52KO lines constructed, resulted in a sharp decrease in cells with EdU spots. Moreover, depletion of FANCA also significantly impaired mitotic DNA synthesis in RPE1 cells. These findings strongly support that mitotic DNA synthesis in RPE1 cells is driven by these Fanconi proteins but not by RAD52. It should also be noted that a selective decrease in EdU-positive cells after FANC2 depletion in RPE1 cells cannot be explained by a difference in cell-cycle progression. Cell-cycle profiles were very similar after RAD52 or FANC2 depletion in RPE1 cells (Supplementary Fig. S5). In contrast to cancer cell lines, RPE1 cells were relatively insensitive to ORC1 depletion, as a small fraction of cells (23.0% ± 1.7%) displayed EdU spots under this condition (Fig. 4E and F). Consistently, codepletion of RAD52 with ORC1 did not suppress the formation of EdU spots (22.0% ± 2.5%). Interestingly, RAD52 depletion by itself slightly increased the number of cells positive for EdU spots as well as FANC2 foci.

As it appears that RAD52 is dispensable for mitotic DNA synthesis in RPE1 cells, we tested the role of BRCA2 in induction of EdU spots. As reported previously (11, 32, 33), depletion of BRCA2 (done independently using two different siRNAs) induced EdU spots in ~50% of RPE1 cells, which was effectively suppressed by codepletion of POLD3 (Supplementary Fig. S6AB). EdU spots induced under BRCA2 depletion were also associated

Figure 6.

EdU spot formation is impaired by FANC2 depletion but enhanced by RAD52 depletion in primary HDFn and IMR90 cells. A and C, Immunoblotting to show single depletion of RAD52, FANC2, or ORC1 in HDFn (A) and IMR90 (C) cells. B and D, Percentage of early M-phase cells positive for EdU spots (top) or >2 FANC2 foci (bottom) per siRNA treatment group in the presence/absence of Aph treatment for HDFn (B) and IMR90 (D) cells. In A and C, filled triangles indicate a nonspecific band detected by the RAD52 antibody. In B and D, error bars indicate standard deviations of respective frequencies; *, P < 0.05 and ***, P < 0.001 by a χ² test, respectively.
with chromosome aberrations (Supplementary Fig. S6C). Therefore, EdU spots formed under this condition displayed the features of mitotic DNA synthesis. These findings indicate that RAD52 and BRCA2 are both dispensable for mitotic DNA synthesis in RPE1 cells.

Depletion of RAD52 increases EdU spot formation in noncancerous fibroblasts

To exclude the possibility that RPE1 cells are an exceptional cell line that does not require RAD52 for mitotic DNA synthesis, we next examined BJ-5ta (BJ) cells, an hTERT-immortalized noncancerous fibroblast cell line (Fig. 5). Following Aph treatment, approximately half of BJ cells displayed EdU spots (48.0% ± 2.9%). Unexpectedly, depletion of RAD52 by siR52-A caused a 1.8-fold increase in cells with EdU spots (87.3% ± 1.9%; Fig. 5A and B). Although RAD52 depletion by siR52-B did not change the percentage of cells positive for EdU spots (46.7% ± 2.9%; Fig. 5A and B), it increased the number of cells with ≥20 EdU spots (12%) relative to siC-treated conditions (0.67%; Fig. 5C, left). Overall, RAD52 depletion enhanced EdU spot formation in BJ cells, which accompanied a significant increase in the fraction of cells with ≥20 FANCD2 foci (45.3% for siR52-A, 70.0% for siR52-B, relative to siC; Fig. 5C, right). As seen in RPE1 cells, depletion of FANCD2 decreased the number of cells positive for EdU spots (36.3% ± 2.8% for siD2-A, 23.5% ± 2.5% for siD2-B). Codepletion of RAD52 and FANCD2 significantly suppressed the formation of EdU spots (32.3% ± 2.7% for siR52-A + siD2-A, 33.7% ± 2.7% for siR52-B + siD2-A), suggesting that FANCD2 is a dominant factor to support mitotic DNA synthesis in BJ cells. Under ORC1 depletion, BJ cells with EdU spots were very rare (3.0% ± 0.98%), although FANCD2 focus formation was greatly enhanced relative to siC-treated conditions (Fig. 5B, right). We further tested HDFn and IMR90, primary fibroblast cell lines (Fig. 6). Again, RAD52 depletion by siR52-A caused a significant increase in the number of cells positive for Aph-induced EdU spots (60.0% ± 2.4% for HDFn, 67.7% ± 3.2% for IMR90) from siC-treated conditions (46.0% ± 2.9% for HDFn, 41.8% ± 3.2% for IMR90). When siR52-B was used, Aph-induced EdU spots were also significantly increased in HDFn cells (52.0% ± 2.9%). Therefore, RAD52 may have an inhibitory role in mitotic DNA synthesis in fibroblasts. Depletion of FANCD2 significantly decreased the number of cells with EdU spots (19.0% ± 2.2% for HDFn, 34.6% ± 3.5% for IMR90), suggesting FANCD2 as a dominant player in supporting mitotic DNA synthesis in these cells. In these cell lines, ORC1 depletion had very little effect on the induction of EdU spots (9.0% ± 1.7% for HDFn, 4.3% ± 1.2% for IMR90). These data suggest that ORC1 depletion is far more effective at inducing mitotic DNA synthesis in cancer cells than in noncancerous cells.

Figure 7.

Codepletion of RAD52 and ORC1 selectively impairs the proliferation of cancer cells. A, Immunoblotting to show levels of FANCD2, RAD52, and ORC1 in the eight cell lines used in this study. Filled triangles indicate a nonspecific band detected by the RAD52 antibody. B, Cell number (top) and colony-forming efficiency (bottom) per siRNA treatment group for HCT116 WT, R52KO (and D2KO) cells. C, Cell number per siRNA treatment group for U2OS, RPE1, and BJ cells. D, Colony-forming efficiency per siRNA treatment group for H1299 and U2OS cells. E, Proposed models for mitotic DNA synthesis in cancer (left) and noncancerous (right) cells. In B–D, error bars indicate standard errors of the mean; *, P < 0.05; **, P < 0.01; ***, P < 0.001 by a t test, respectively.
noncancerous cells. This may be attributed, partially if not all, to the highly upregulated expression of ORC1 in cancer cell lines relative to noncancerous cell lines (Fig. 7A; ref. 42).

Codelpletion of RAD52 and ORC1 selectively impairs the proliferation of cancer cells

RAD52 now emerges as an attractive target for cancer therapies given its role in mitotic DNA synthesis (11). To enhance the efficacy of this strategy, we exploited ORC1 depletion to induce mitotic DNA synthesis preferentially in cancer cells. In a short-term assay to determine cell numbers (Fig. 7B, top), HCT116 R52KO cells (as well as D2KO cells) were found to be less proliferative relative to WT HCT116 cells even in siC-treated conditions (31, 37). ORC1 depletion further impaired the proliferation of these cells. Codelpletion of RAD52 and ORC1 also impaired the proliferation of U2OS cells but not of RPE1 or BJ cells relative to siC-treated conditions (Fig. 7C). In a colony-forming assay (Fig. 7B, bottom), the less proliferative nature of HCT116 R52KO cells was more evident particularly after ORC1 depletion. Codelpletion of RAD52 and ORC1 also substantially inhibited the colony-forming abilities of H1299 and U2OS cells compared with siC-treated conditions (Fig. 7D). We could not perform the colony-forming assay on noncancerous cell lines, because these cells did not form distinct, scorable colonies. Overall, these data support that cotargeting RAD52 and ORC1 selectively impairs the proliferation of cancer cells.

Discussion

In this study, we demonstrated that FANCD2 supports mitotic DNA synthesis along with RAD52 in cancer cell lines. Moreover, our data consistently indicate that mitotic DNA synthesis in noncancerous cell lines predominantly depends on FANCD2. Unexpectedly, RAD52 had little effect on mitotic DNA synthesis in RPE1 cells. In the fibroblast cell lines, it appears that RAD52 suppresses mitotic DNA synthesis, as its depletion significantly enhanced the formation of EdU spots. Collectively, we propose models (Fig. 7E) in which FANCD2 acts as a fundamental player in mitotic DNA synthesis in human cells. Recent studies identified a RAD52-independent mechanism for DNA synthesis at telomeres during the G2–M phases in cancer cells (43, 44). Because this unusual timing of DNA synthesis at telomeres displays mechanistic similarities with mitotic DNA synthesis, it will be intriguing to find out if this new mechanism also depends on FANCD2. Given our finding on the involvement of FANCA in mitotic DNA synthesis (Figs. 3 and 4), it is likely that the Fanconi core complex and FANCD2 coordinately regulate this process independently of BRCA2/RAD51 (FANCD1/FANCR). In this context, it will be important to understand the underlying mechanism with respect to the human genetic disorder Fanconi anemia. In contrast, we previously reported that FANCC was dispensable for EdU spot formation in mice (12), suggesting the possibility that mitotic DNA synthesis operates differently between these species. It may be possible that mitotic DNA synthesis in mice primarily depends on RAD52 or unknown factors. These possibilities should be addressed in future studies. Our findings suggest that the role of RAD52 in mitotic DNA synthesis is restricted to cancer cells. Given the highly upregulated expression of RAD52 in cancer cells (Fig. 7A), we speculate that RAD52 may acquire a role as an additional promoter of mitotic DNA synthesis during cancer development. This may allow for cancer cells to perform an “upgraded” form of mitotic DNA synthesis, which may help them cope with replication stress to sustain their survival and proliferation.

Although RAD52 depletion reproducibly caused a significant inhibition of EdU spot formation in cancer cells, its effect on FANCD2 focus formation was far from uniform among the cancer cell lines used in this study. In HCT116 cells, the absence/depletion of RAD52 invariably resulted in a decline in the number of FANCD2 foci (Figs. 1 and 2; Supplementary Fig. S1). In H1299 cells, RAD52 depletion had either no effect or impaired FANCD2 focus formation (Fig. 3). In U2OS and HeLa cells, we observed complicated bimodal forms of FANCD2 focus formation (see Supplementary Figs. S3 and S4). Although such differences may be attributed to cancer types, mutations/deficiencies each cancer line harbors, and/or their intrinsic genetic make-ups, we do not have a feasible explanation for it at this time. Whatever the effect of RAD52 depletion on FANCD2 focus formation would be, our data inherently point out that RAD52 and FANCD2 function independently in mitotic DNA synthesis in the cancer cell lines we tested. On the other hand, RAD52 depletion consistently enhanced the formation of FANCD2 foci and EdU spots in the fibroblast cell lines. Even in RPE1 cells, we found that depletion/lack of RAD52 increases the number of FANCD2 foci per cell (see R52KOD8 in Fig. 4D).

Without Aph treatment, EdU spots were rarely observed in noncancerous cell lines. This was also the case for HCT116 cells. However, other cancer cell lines (in particular H1299 cells) had relatively high basal levels of EdU spots along with an increased number of FANCD2 foci. As shown for DNA synthesis at telomeres during G–M phases, the status of p53 may play a role for high basal levels of EdU spots (45). Although Aph is a nonselective inducer of mitotic DNA synthesis, depletion of ORC1 induced EdU spots preferentially in cancer cells. This is consistent with the idea that cancer cells rely heavily on dormant origins to resolve stalled replication forks to better cope with intrinsic replication stress they may harbor. In fact, depletion of ORC or MCM proteins causes a significant loss of dormant origins (26, 27, 46), which makes cancer cells far less viable and proliferative relative to noncancerous cells (42, 47). In this context, a loss of dormant origins is expected to cause the accumulation of late replication intermediates especially in cancer cells, which are most likely resolved by mitotic DNA synthesis. Supported by our data (Fig. 7B–D), inhibition of mitotic DNA synthesis by targeting RAD52 under such conditions may provide a chance to selectively impair the proliferation of cancer cells. For this purpose, we think that ORC is a better target, as a chronic reduction of MCM causes tumors in mice (48, 49). On the other hand, defects in ORC are associated with Meier–Goerlin syndrome, a primordial dwarfism that has no known increased risks of cancer (50).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: K.D. Pederson, N. Shima
Development of methodology: K.D. Pederson, N. Shima
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): C.L. Graber-Feesl, K.J. Aney, N. Shima
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): C.L. Graber-Feesl, K.D. Pederson, N. Shima
Writing, review, and/or revision of the manuscript: C.L. Graber-Feesl, K.J. Aney, N. Shima
Differential Regulation of Mitotic DNA Synthesis

utilizing the following: Masonic Cancer Center, University of Minnesota Shared Resource, Genome Engineering Shared Resource (GERSR).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received January 17, 2019; revised April 12, 2019; accepted May 16, 2019; published first May 21, 2019.

References

31. Kan Y, Batada NN, Hendrickson EA. Human somatic cells deficient for RADS2 are impaired for viral integration and compromised for most aspects of homology-directed repair. DNA Repair (Amst) 2017;55:64–75.

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): C.L. Gruber-Feid, K.D. Pederson

Study supervision: N. Shima

Acknowledgments

This work is supported by grants from the NIH to N. Shima primarily by NCI R03 CA227215 and partially by NIEHS R21 ES027962. We thank Drs. Eric Hendrickson and Alex Sobeck at the University of Minnesota for HCT116 cell lines. We also appreciate Madison Duffy, Anika Tella, and Madeleine Hinojos for their technical help. This work was supported in part by NIH P30 CA75598

