Highlights of This Issue 1013

CANCER GENES AND NETWORKS

1015 The RUNX Transcriptional Coregulator, CBFβ, Suppresses Migration of ERþ Breast Cancer Cells by Repressing ERα-Mediated Expression of the Migratory Factor TFF1
Henry J. Pegg, Hannah Harrison, Connor Rogerson, and Paul Shore

1024 Insight into the Etiology of Undifferentiated Soft Tissue Sarcomas from a Novel Mouse Model
Jonathan T. Fleming, Emily Brignola, Lei Chen, Yan Guo, Shilin Zhao, Quan Wang, Ringshan Li, Hernán Correa, Alexandre N. Ermilov, Andrezej A. Dlugosz, and Chin Chiang

1036 Establishment and Characterization of Four Novel Thyroid Cancer Cell Lines and PDX Models Expressing the RET/PTC1 Rearrangement, BRAFV600E, or RASQ61R as Drivers
Rebecca E. Schweppe, Nikita Pozdeyev, Laura A. Pike, Christopher Korch, Qiong Zhou, Quan Wang, Ringshan Li, Hernán Correa, Alexandre N. Ermilov, Andrezej A. Dlugosz, and Chin Chiang

1049 Therapeutic Targeting of CD146/MCAM Reduces Bone Metastasis in Prostate Cancer
Eugenio Zoni, Letizia Astrologo, Charlotte K.Y. Ng, Salvatore Piscuoglio, Janine Melsen, Joel Grosjean, Irena Klima, Lanpeng Chen, Ewa B. Snaar-Jagalska, Kenneth Flanagan, Gabri van der Pluijm, Peter Kloen, Marco G. Cechini, Marianna Kruthof-de Julis, and George N. Thalmann

1063 Opposing Roles of the Forkhead Box Factors FoxM1 and FoxA2 in Liver Cancer
Vaibhav Chaudhary, Akshay Pandey, Dragana Kopanja, Grace Guzman, and Pradip Raychaudhuri

CANCER “-OMICS”

1075 The Germline Variants rs61757955 and rs34988193 Are Predictive of Survival in Lower Grade Glioma Patients
Ajay Chatrath, Manjiri Kiran, Pankaj Kumar, Aakrosh Ratan, and Anindya Dutta

1087 Mechanoschemical Disruption Suppresses Metastatic Phenotype and Pushes Prostate Cancer Cells toward Apoptosis
Hakm Y. Murad, Heng Yu, Daishen Luo, Emma P. Bortz, Gray M. Halliburton, Andrew B. Sholl, and Damir B. Khismatullin

1102 An Integrated Stress Response Agent that Modulates DR5-Dependent TRAIL Synergy Reduces Patient-Derived Glioma Stem Cell Viability
Saad Sheikh, Deeksha Saxena, Xiaobing Tian, Ahmad Aminzaghaghi, Andrew Tsourkas, Steven Brem, and Jay F. Durney

CELL FATE DECISIONS

1115 Multiple Defects Sensitize p53-Deficient Head and Neck Cancer Cells to the WEE1 Kinase Inhibition
Ahmed Diab, Michael Kao, Keffy Kehuli, Hye Yoon Kim, Julia Sidorova, and Eduardo Mendez

1129 The SIAH1–HIPK2–p53ser46 Damage Response Pathway is Involved in Temozolomide-Induced Glioblastoma Cell Death
Yang He, Winand P. Roos, Qianchao Wu, Thomas G. Hofmann, and Bernd Rains

METABOLISM

1142 Plasminogen Activator Inhibitor 1 (PAI1) Promotes Actin Cytoskeleton Reorganization and Glycolytic Metabolism in Triple-Negative Breast Cancer

1155 Molecular Characterization of Prostate Cancer with Associated Gleason Score Using Mass Spectrometry Imaging
Lipid Uptake Is an Androgen-Enhanced Lipid Supply Pathway Associated with Prostate Cancer Disease Progression and Bone Metastasis

Interaction Between MUC1 and STAT1 Drives IFITM1 Overexpression in Aromatase Inhibitor–Resistant Breast Cancer Cells and Mediates Estrogen-Induced Apoptosis
Taylor E. Escher, Asona J. Lui, Eric S. Geanes, Katherine R. Walter, Ossama Tawfik, Christy R. Hagan, and Joan Lewis-Wambi

Desmoglein 1 Regulates Invadopodia by Suppressing EGFR/Erk Signaling in an Erbin-Dependent Manner
Alejandra Valenzuela-Iglesias, Hope E. Burks, Christopher R. Arnette, Amulya Yalamanchili, Oxana Nekrasova, Lisa M. Godsel, and Kathleen J. Green

Dual Targeting of EGFR and IGF1R in the TNFAIP8 Knockdown Non–Small Cell Lung Cancer Cells
Timothy F. Day, Bhaskar V.S. Kallakury, Jeffrey S. Ross, Olga Voronel, Shantashri Vaidya, Christine E. Sheehan, and Usha N. Kasid

Desmoglein 1 Regulates Invadopodia by Suppressing EGFR/Erk Signaling in an Erbin-Dependent Manner

Hypoxia-Associated Factor (HAF) Mediates Neurofibromin Ubiquitination and Degradation Leading to Ras–ERK Pathway Activation in Hypoxia
Yangsook Song Green, Timothy Sargis, Ethan Conrad Reichert, Eleanor Rudasi, Daniel Fuja, Eric Jonasch, and Mei Yee Koh

Metabolic alterations underlie major changes in tumor cell biology, including increased cell migration and metastasis. The cover image shows fluorescence microscopy of a PAI1-expressing orthotopic xenograft tumor (green) and the collagen matrix (gray) at its invasive front. PAI1 expression increased glycolysis and promoted collagen fiber alignment, both of which are associated with increased cell migration. Taken together, the data suggest that targeting cancer metabolic pathways may be an avenue to reduce metastatic spread. See the article by Humphries and colleagues (beginning on page 1142) for more information.