Targeted Therapy for EBV-Associated B-cell Neoplasms

Siddhartha Ganguly1,2, Sudhakiranmayi Kuravi1,2, Satyanarayana Alleboina1,2, Giridhar Mudduluru1,2, Roy A. Jensen2,3,4, Joseph P. McGuirk1,2, and Ramesh Balusu1,2,4

Abstract

Epstein–Barr virus (EBV) is directly implicated in several B-cell lymphoid malignancies. EBV-associated lymphomas are characterized by prominent activation of the NF-κB pathway and targeting this pathway establishes a rationale for a therapeutic approach. The ubiquitin/proteasome signaling plays an essential role in the regulation of the NF-κB pathway. Ixazomib is an FDA-approved, orally bioavailable proteasome inhibitor. Here we report the first preclinical evaluation of ixazomib-mediated growth-inhibitory effects on EBV-infected B-lymphoblastoid cell lines Raji and Daudi. Ixazomib induced apoptosis in these cell lines in a dose-dependent manner. Cell-cycle analysis demonstrated ixazomib treatment induced cell-cycle arrest at the G2–M phase with a concomitant decrease in G0–G1 and S phases. The results further revealed an increase in p53, p21, and p27 levels and a decrease in survivin and c-Myc protein levels. Mechanistically, ixazomib treatment resulted in the accumulation of polyubiquitinated proteins, including phosphorylated IκBα with a significant reduction of p65 subunit nuclear translocation. Altogether, our preclinical data support the rationale for in vivo testing of ixazomib in EBV-associated B-cell neoplasms.

Implications: This preclinical study supports the use of oral proteasome inhibitor ixazomib for targeting NF-κB signaling in the treatment of EBV-associated B-cell neoplasms.

Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/4/839/F1.large.jpg.

Introduction

Epstein–Barr virus (EBV) is directly implicated in several B-cell lymphoid malignancies (1). EBV-associated B-cell neoplasms occur in both solid organ and allogeneic hematopoietic stem cell transplantations due to the necessity of immunosuppression in these patients to modulate organ rejection and graft versus host disease (GVHD), respectively (2). Treatment of these B-cell neoplasms is limited to a reduction in immunosuppression, administration of immunotherapeutics, and antineoplastic chemotherapy (3). EBV-associated lymphomas are characterized by prominent activation of NF-κB pathway and targeting this pathway establishes a rationale for an attractive therapeutic...
approach (4). The ubiquitin/proteasome signaling pathway plays an important role in the regulation of NF-κB signaling pathway (5). Bortezomib is the first FDA-approved proteasome inhibitor for treating both newly diagnosed and relapsed/refractory multiple myelomas, and mantle cell lymphomas. Bortezomib acts through inhibition of the 20S proteasome, a large protease complex that degrades ubiquitinated proteins. Bortezomib stabilizes various cellular proteins involved in cell-cycle arrest and apoptosis including p21, p27, p53, and IκBα by inhibiting proteasome function (6). Stabilization of IκBα results in inhibition of the NF-κB signaling pathway, which promotes tumor cell survival, growth, and angiogenesis (7). The major limiting factor for long-term administration of bortezomib through intravenous or subcutaneous routes is a risk of peripheral neuropathy (8). There was a need to develop an orally bioavailable proteasome inhibitor with a low toxicity profile to overcome this conundrum. Ixazomib is structurally a dipeptidyl leucine boronic acid and the only approved orally bioavailable proteasome inhibitor. Ixazomib inhibits proteasome activity at low concentrations by binding to the β5 subunit of the 20S catalytic core subunit of the proteasome and is currently in clinical trials for patients with relapsed/refractory multiple myeloma and solid tumors (9–11). Compared with bortezomib, ixazomib has demonstrated similar efficacy with better pharmacokinetic/pharmacodynamic parameters in multiple myeloma. Ixazomib in combination with lenalidomide and dexamethasone sensitizes bortezomib-resistant myeloma phenotype. From the existing literature review, there are no reports on the preclinical or clinical use of ixazomib in EBV-associated B-cell neoplasms. Therefore, using ixazomib for targeting NF-κB activation is a novel therapeutic approach and our preclinical data suggest the potential of ixazomib use as monotherapy or in combination for the treatment of EBV-associated B-cell neoplasms.

Materials and Methods

Cell lines and culture conditions
Human EBV-positive Burkitt lymphoma–derived cell lines Raji and Daudi were purchased from ATCC. Cells were grown in HyClone RPMI1640 medium supplemented with 10% FBS (Corning Life Sciences) and 1% penicillin/streptomycin (Corning Life Sciences) at 37°C with 5% carbon dioxide.

Isolation of normal B cells
Healthy individual blood samples were procured from Biorepository Core Facility at the University of Kansas Medical Center (Kansas City, KS). Normal B cells were isolated from the blood samples using CD19 Positive Selection Kit from Stemcell Technologies.

Reagents and antibodies
The following antibodies were used: β-actin-612656, p65-610868, p21-556431, PARP-556494, and p53-554293; (BD Biosciences); phospho-IκBα-2859, IκBα-9247, GAPDH-5174, Survivin-28023, and p27-3688 (Cell Signaling Technology); Lamin B-6216 and c-Myc-40 (Santa Cruz Biotechnology); and polyubiquitin-SIG-39500 (Covance). Propidium iodide (PI) and RNase were purchased from Sigma-Aldrich and ixazomib from Selleck Chemicals.

Flow cytometry
FACS analysis was carried out as described previously (12). Briefly, normal B cells, Raji, and Daudi cells were treated with various concentrations of ixazomib for 48 hours, and the cells were harvested, washed with PBS, and incubated with the FITC-Annexin V antibody (556419 BD Biosciences) and TO-PRO-3 stain (Molecular Probes). Samples were analyzed using BD Accuri C6 Plus flow cytometer (BD Biosciences).

Cell-cycle analyses
After indicated treatments, cells were harvested, washed with PBS, and fixed in ethanol overnight at −20°C. The cell-cycle analysis was performed as described previously (12).

Cell fractionation and immunoblot analyses
After indicated treatments, the cells were harvested, and nuclear and cytosolic fractionations were made using NE-PER Nuclear and Cytoplasmic Extraction Kit (Pierce Biotechnology). For immunoblot analyses, total cell lysates were made with a non-denaturing lysis buffer with protease inhibitors (Complete Mini, Roche Diagnostics), protein concentrations were determined using BCA Protein Assay Kit (Pierce Biotechnology), and the samples were separated by SDS-PAGE as described previously (12). The blots were scanned using the Odyssey IR scanner (LI-COR Biosciences).

Immunofluorescence
After designated treatments, cells were cytospon onto glass slides (Wescor Cytopro Cytocentrifuge), fixed with 4% paraformaldehyde, permeabilized with 0.5% Triton-X-100 in PBS, and blocked with 5% BSA/PBS. The slides were then incubated with p65 antibody for 2 hours, washed with PBS and incubated with secondary antibody conjugated with Dylight-594 for an hour (D1-2594, Vector Laboratories), and finally mounted with Vectashield antifade mounting medium with DAPI (H-1200, Vector Laboratories). Images were acquired using with an Eclipse E1000 microscope (Nikon).

Statistical analyses
Significant differences in values between treated and untreated lymphoma cells in different experimental conditions were determined by one-way ANOVA with Dunnett test method (SigmaPlot, version 13.0, Systat Software). Significance was defined as \(P < 0.05 \).

Results

Ixazomib induces apoptosis in EBV-associated lymphoma cells
We determined the apoptotic effect of ixazomib in EBV-associated lymphoma cell lines Raji and Daudi. The normal B cells and the lymphoma cell lines were treated with increasing concentrations (0 to 100 nmol/L) of ixazomib for 48 hours. After treatment, cells were washed with PBS and incubated with FITC-Annexin V and To-Pro-3 stain. The percentage of apoptotic cells was then determined by flow cytometry. As demonstrated in Fig. 1A, Raji and Daudi cell lines showed induced apoptosis in a dose-dependent manner (\(P < 0.005 \); Fig. 1A), but no significant effect was seen on normal B cells. The two tested cell lines are sensitive to ixazomib. Altogether, these results suggest that ixazomib induces apoptosis in EBV-associated lymphoma cell lines.

Ixazomib induces G2–M cell-cycle arrest in EBV-associated lymphoma cells
We also determined the effect of ixazomib on the cell-cycle status in Raji and Daudi cells. Because of the high percentage of
apoptotic cells at higher concentrations and extended treatment periods, we restricted the treatment duration to 24 hours. After 24 hours of treatment, cells were washed, fixed, and then cell-cycle analysis was performed using flow cytometry. The addition of ixazomib inhibited the growth of cells in a dose-dependent manner in both cell lines (Fig. 1B). Indeed, at 100 nmol/L of ixazomib concentration, the proportion of cells actively replicating DNA (S phase) decreased by 10% and the fraction of 2N DNA (G0–G1) reduced significantly by 25% compared with the control. Then, we had cells at 4N DNA (G2–M), which increased markedly by more than 30% (Fig. 2). These results suggest that ixazomib treatment inhibits the cellular DNA synthesis leading to cell-cycle arrest at the G2–M phase of the EBV-associated lymphoma cell lines.

Ixazomib upregulates cell-cycle regulators and inhibits antiapoptotic proteins

After observing induced apoptosis and cell-cycle arrest with ixazomib treatment, we explored the changes in the key regulatory molecules involved in the process of cell cycle and apoptosis. Both cell lines, Raji and Daudi, were treated with ixazomib (0 to 100 nmol/L) and incubated for 24 hours. As demonstrated in Fig. 2A and B, both cell lines showed increased polyubiquitinated proteins with induction of key cell-cycle regulators p53, p21, and p27 in a dose-dependent manner (Fig. 2A and B). Compared with control, the antiapoptotic protein amounts of survivin and c-Myc were decreased in ixazomib-treated lymphoma cells. Also, we observed cleaved PARP in a dose-dependent manner in both cell lines (Fig. 2A and B). These observations clearly confirm the effect of ixazomib in cell-cycle regulation and apoptosis by differentially regulating p53, p21, p27, survivin, c-Myc, and PARP activity.

Ixazomib inhibits proteasomal degradation of phosphorylated IkB-α

From the previous results, it is clearly evident that ixazomib treatment leads to accumulation of polyubiquitinated proteins. On the basis of previous literature, it is clear that EBV-induced NF-κB activation plays a crucial role in the transformation of lymphoma cells (1). To confirm, we have examined the expression status of pIkBα (S32/36) after 100 nmol/L of ixazomib treatment in a time-dependent manner for up to 8 hours. We observed the inhibition of pIkBα proteasomal degradation, which is a key regulatory subunit of NF-κB (Fig. 3A). However, no changes were detected in protein amounts of IkBα and p65 in a time-dependent manner in both tested cell lines (Fig. 3A). These results suggest that ixazomib blocks proteasomal degradation of pIkBα and inhibits the NF-κB pathway in EBV-associated lymphoma cell line.
Ixazomib reduces nuclear translocation of NF-κB subunit

Removal of pIkBα subunit from the p65 complex leads to the activation of NF-κB signaling. Inhibition of pIkBα degradation by the proteasome inhibitor ixazomib decreases p65 translocation from the cytosol into the nucleus. On the basis of the time course results, we chose to use the 6th hour as the time point and 100 nmol/L as the treatment concentration for immunofluorescence and Western blot analysis to show the cellular localization of p65 (red color). In both cell lines, immunofluorescence showed an increased cytosolic accumulation of p65 after 6 hours (Fig. 3B). Western blot analysis from nuclear and cytosolic fractions showed that ixazomib inhibited the p65 translocation from cytoplasm to the nucleus in a time-dependent manner (Fig. 3C), which is concomitant with increased pIkBα in both tested cell lines (Fig. 3A). The purity of fractions was assessed using GAPDH as cytosolic and lamin B as the nuclear fraction controls. In conclusion, these results reveal that ixazomib treatment inhibits the NF-κB pathway by actively reducing p65 translocation to the nucleus in EBV-associated lymphoma cell lines.

Discussion

Inhibition of proteasome activity disrupts the regulation and stability of intracellular proteins like cell-cycle regulators, proapoptotic proteins, and many others (5). Bortezomib is a known and well-characterized proteasome inhibitor, which is clinically used to treat hematologic malignancies. The major limiting factor of bortezomib is long-term administration through ivaneous or subcutaneous routes with the associated risk of peripheral neuropathy (8). Carfilzomib is another FDA-approved proteasome inhibitor but administered intravenously similar to bortezomib (11). Ixazomib is the only alternative proteasome inhibitor to overcome this bortezomib-mediated clinical toxicity (11). Ixazomib is the first clinically available oral proteasome inhibitor and has been approved for use as a single agent or in combination with other drugs in myeloma therapy (13). A phase I study was conducted to determine the pharmacokinetic parameters in patients with multiple myeloma (13). On the basis of these results, several phase II and III clinical trials have been conducted in patients with relapsed/refractory multiple myeloma. Results indicate progression-free survival is longer in ixazomib-treated patients compared with a placebo group. A recent double-blind, phase III clinical trial demonstrated ixazomib plus lenalidomide and dexamethasone resulted in a significantly longer progression-free survival with limited toxic effects in patients with multiple myeloma compared with the control arm (13). In this study, we tested the preclinical efficacy of the next-generation orally administrated proteasome inhibitor ixazomib in EBV-associated lymphoma cell lines. We found that ixazomib significantly enhances apoptosis and cell-cycle arrest by stabilizing p53 and inhibiting the NF-κB pathway by interfering p65 translocation to the nucleus.

The cell transforms to a cancerous cell by gaining the sustainable control of different cellular functions such as apoptosis, differentiation, growth, replication, angiogenesis, invasion, and metastasis, which are mediated by different molecular network mechanisms (14). The ubiquitin–proteasome degradation pathway (UPP) is one such cellular function. UPP has been demonstrated to be involved in cell-cycle progression, apoptosis, transcription, inflammation, as well as immune surveillance (15). These essential functional roles of UPP have made it an important druggable pathway to treat different types of cancer (16). Proteosome signaling plays a critical role in NF-κB activation and regulation. Furthermore, B-cell lymphoid malignancies are directly influenced by EBV, which are known to activate the NF-κB pathway (17). In this study, we examined the effects of
proteasome inhibitor ixazomib on apoptosis and cell-cycle checkpoints in EBV-associated lymphoma cell lines Raji and Daudi. Ixazomib treatment significantly induced apoptosis in these two cell lines in a dose-dependent manner. Our results are in line with the data of Chauhan and colleagues, where they demonstrated that ixazomib treatment induced apoptosis in human multiple myeloma cell lines (18). Furthermore, ixazomib-induced apoptosis results are comparable with bortezomib in EBV-associated B-cell lymphoma cells (1).

Several other studies have reported that proteasome inhibitors lead to stabilization of polyubiquitinated proteins. Here in, we observed the same with ixazomib in a dose-dependent manner. Following ixazomib treatment, both the studied cell lines showed polyubiquitinated proteins and the stabilization of p53 protein, which lead to differential regulation of cell-cycle regulators such as p21, p27, and antiapoptotic molecules like c-Myc and survivin (20). G1–S and G2–M cell-cycle transitions are controlled by multiple proteins. Transcription of a plethora of cell-cycle–promoting genes is maintained in an inactive state by interaction or transcription inhibition by p21 and p27 (21). In different cancer entities, it is established that p53 activation transcriptionally represses c-Myc required for cell-cycle regulation and apoptosis (22). Survivin is a downstream regulatory molecule of the NF-κB signaling axis, which is also a transcriptionally repressed antiapoptotic gene by p53. (23). Cleavage of PARP is a known molecular event for activating apoptosis signaling (24). Our data suggest that ixazomib induces expression of cell-cycle regulators p21 and p27, where they inhibit the cell cycle at G1–S and G2–M. Furthermore, reduced antiapoptotic proteins c-Myc and survivin, with the association of PARP cleavage, is a clear indication of its positive role in apoptosis.

As discussed, NF-κB plays a critical role in proteasome-mediated cellular functions and consists of NF-κB1/p50, NF-κB2/p52, RelA/p65, RelB, and c-Rel as family members (Fig. 3, visual overview). NF-κB forms various homo- and heterodimeric complexes. Activation of NF-κB signaling mediates through translocation of the p65 complex into the nucleus. NF-κB activation is regulated by IκBα, which masks the nuclear localization signal.
motif of p65. When IkB kinases (IkKα, IkKβ, and IkKγ) phospho-
phorylate IkBα, they were also simultaneously ubiquitinated and
degraded by proteasome machinery (Fig. 3, visual overview). Thus, the free NF-κB dimer can translocate to the nucleus, where
degrative IkBα protein amounts without altering the total IkBα protein amount in both treated cell
clines Raji and Daudi. Furthermore, it is clearly evident that in both
cell lines, RelA/p65 accumulated in the cytoplasm rather
than in the nucleus. Second, RelA/p65 nuclear presence decreased
markedly in the treated cells. As expected, the screened NF-
kB-regulated genes c-Myc and survivin were also downregulated (22–
23). Collectively, these preclinical findings suggest that inhibition
of NF-κB signaling using ixazomib may be an attractive thera-
pic approach in patients with EBV-associated B-cell neoplasms.

Disclosure of Potential Conflicts of Interest
S. Ganguly has received speakers bureau honoraria from Seattle Genetics and is
a consultant/advisory board member for Amgen, Takeda, Janssen, Kite
Pharma, and Daiichi Sankyo. J.P. McGuirk reports receiving commercial
research grants from Novartis, Fresenius Biotech, Astellas Pharma, Bellcium
Pharmaceuticals, Gamida Cell, and Pluristem Ltd, reports receiving other
commercial research support from ArticulateScience LLC, and has received
speakers bureau honoraria from Kite Pharma. No potential conflicts of interest
were disclosed by the other authors.

References
1. Zou P, Kawada I, Premicak I, Cohen JI. Bortezomib induces apoptosis of
Epstein-Barr virus (EBV)-transformed B cells and prolongs survival of mice
Risk factors for Epstein-Barr virus-related post-transplant lymphoproliferative
disease after allogeneic hematopoietic stem cell transplantation.
lymphoproliferative disease after pediatric solid organ transplantation.
4. Ok CY, Papathomas TG, Medeiros LJ, Young KH. EBV-positive diffuse large
6. Rastogi N, Mishra DP. Therapeutic targeting of cancer cell cycle using
7. Ferreiro DU, Komives EA. Molecular mechanisms of system control of NF-
8. Argyriou AA, Ikonomou G, Kalofonos HP. Bortezomib-induced peripheral
neuropathy in multiple myeloma: a comprehensive review of the literature.
on ixazomib potential in the treatment of multiple myeloma. Drug Design
10. Offidani M, Cortvita L, Caraffa P, Gentili S, Maracci L, Legioni P. An evidence-
based review of ixazomib citrate and its potential in the treatment of newly
et al. A phase 1 study to assess the relative bioavailability of two capsule
formulations of ixazomib, an oral proteasome inhibitor, in patients with
Targeting levels or oligomerization of nucleophosmin 1 induces differen-
tiation and loss of survival of human AML cells with mutant NPM1.
Randomized phase 2 trial of ixazomib and dexamethasone in relapsed
multiple myeloma not refractory to bortezomib. Blood 2016;128:
2415–22.
2011;144:646–74.
16. Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in
17. Exirfaj L, Bernhardt K, Gewurz BE. NF-kappaB and IRF7 pathway
activation by Epstein-Barr virus latent membrane protein 1. Viruses
in vivo selective antitumor activity of a novel orally bioavailable protea-
some inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res
2011;17:5311–21.
polyubiquitination: differential control of p53 fate by Mdm2. Science
20. Wang HC, Hsu SP, Lee WS. Extra-nuclear signaling pathway involved in
progesterone-induced up-regulations of p21cip1 and p27kip1 in male rat
21. Otto T, Sicsinski P. Cell cycle proteins as promising targets in cancer therapy.
22. Ho JS, Ma W, Mao DY, Benchimol S. p53-dependent transcriptional
repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol
23. Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M. Transcriptional
repression of the anti-apoptotic survivin gene by wild type p53. J Biol
Chem 2002;277:3247–57.
24. Soldani C, Scovassi AI. Poly(ADP-ribose) polymerase-1 cleavage during
Transduct Targeted Ther 2017;2:17023.

Authors’ Contributions
Conception and design: S. Ganguly, S. Alleboina, R.A. Jensen, R. Balusu
Development of methodology: S. Ganguly, S. Kuravi, S. Alleboina, R. Balusu
Acquisition of data (provided animals, acquired and managed
patients, provided facilities, etc.): S. Ganguly, S. Alleboina, R.A. Jensen,
R. Balusu
Analysis and interpretation of data (e.g., statistical analysis, biostatistics,
computational analysis): S. Ganguly, S. Kuravi, S. Alleboina, G. Mudduluru,
J.P. McGuirk, R. Balusu
Writing, review, and/or revision of the manuscript: S. Ganguly, S. Kuravi,
Administrative, technical, or material support (i.e., reporting or organizing
data, constructing databases): S. Ganguly, S. Alleboina, R.A. Jensen, R. Balusu
Study supervision: S. Ganguly, R. Balusu

Acknowledgments
The authors would like to thank Ms. Sophia McCormick and Mrs. Cassandra
Shipman from the Biospecimen Repository Core Facility (BBRC), the University
of Kansas Medical Center (Kansas City, KS) for providing healthy donor blood
to isolate normal B cells. R. Balusu acknowledges the pilot award from American
Cancer Society (ACS-IRG-16-194-07), Sosland Family Foundation Research Award,
Hale Family Foundation, and Frontiers Clinical and Translational Pilot
Award (U11TB000001). We are very grateful to Dr. Janet Cheng [lab member] for thorough
proofreading of the manuscript.

Received August 29, 2018; revised October 16, 2018; accepted November 14,
2018; published first November 28, 2018.
Targeted Therapy for EBV-Associated B-cell Neoplasms

Siddhartha Ganguly, Sudhakiranmayi Kuravi, Satyanarayana Alleboina, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-18-0924

Visual Overview
A diagrammatic summary of the major findings and biological implications:
http://mcr.aacrjournals.org/content/17/4/839/F1.large.jpg

Cited articles
This article cites 25 articles, 11 of which you can access for free at:
http://mcr.aacrjournals.org/content/17/4/839.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://mcr.aacrjournals.org/content/17/4/839.
Click on "Request Permissions" which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.