Highlights of This Issue 1959

REVIEW

1961 Deciphering the Role of Protein Kinase D1 (PKD1) in Cellular Proliferation Ilige Youssef and Jean-Marc Ricort

CANCER GENES AND NETWORKS

1975 Ubiquitin-Specific Protease 3 Promotes Glioblastoma Cell Invasion and Epithelial–Mesenchymal Transition via Stabilizing Snail Ligang Fan, Zhengxin Chen, Xiaoting Wu, Xiaomin Cai, Shuang Feng, Jiacheng Lu, Huibo Wang, and Ning Liu

1985 Loss of MAP3K7 Sensitizes Prostate Cancer Cells to CDK1/2 Inhibition and DNA Damage by Disrupting Homologous Recombination Satoshi Washino, Leah C. Rider, Lina Romero, Lauren K. Jillson, Trisiani Affandi, Angela M. Ohm, Elaine T. Lam, Mary E. Reyland, James C. Costello, and Scott D. Cramer

1999 AP-1 Signaling by Fra-1 Directly Regulates HMGA1 Oncogene Transcription in Triple-Negative Breast Cancers Claire Tolza, Fabienne Bejjani, Emilie Evanno, Samantha Mahfoud, Gabriel Moquet-Torcy, Thierry Gostan, Muhammad Ahmad Masboul, Olivier Kirsh, Marc Piechaczky, and Isabelle Jariel-Encontre

2015 Semaphorin 4C Promotes Macrophage Recruitment and Angiogenesis in Breast Cancer Jie Yang, Zhen Zeng, Long Qiao, Xuefeng Jiang, Jingjing Ma, Junmai Wang, Shuangmei Ye, Quanfu Ma, Juncheng Wei, Mingfu Wu, Xiao yuan Huang, Ding Ma, and Qinglei Gao

2029 Abemaciclib Is Effective Against Pancreatic Cancer Cells and Synergizes with HuR and YAP1 Inhibition Teena Dhir, Christopher W. Schultz, Aditi Jain, Samantha Z. Brown, Alex Haber, Austin Goetz, Chunhua Xi, Gloria H. Su, Liang Xu, James Posey III, Wei Jiang, Charles J. Yeo, Taita Golan, Michael J. Pishvaian, and Jonathan R. Brody

CANCER "-OMICS"


2051 BORIS Expression in Ovarian Cancer Precursor Cells Alters the CTCF Cistrome and Enhances Invasiveness through GALNT14 Joanna C. Hillman, Elena M. Pugacheva, Carter J. Barger, Sirinapa Sribenja, Spencer Rosario, Mustafa Alhabrani, Alexander M. Truskinovsky, Aimee Stablewski, Song Liu, Dmitri I. Loukinov, Gabriel E. Zentner, Victor V. Lobanenkov, Adam R. Karpf, and Michael J. Higgins


GENOME MAINTENANCE

2077 Enhanced Activity of Variant DNA Polymerase β (D160G) Contributes to Cisplatin Therapy by Impeding the Efficiency of NER Meina Wang, Enjie Li, Lin Lin, Alagamuthu Karthick Kumar, Feiyi Pan, Lingfeng He, Jing Zhang, Zhigang Hu, and Zhigang Guo

METABOLISM

2089 HILPDA Regulates Lipid Metabolism, Lipid Droplet Abundance, and Response to Microenvironmental Stress in Solid Tumors Matthew J. VandeKopple, Jinghui Wu, Erich N. Auer, Amato J. Giaccia, Nicholas C. Denko, and Joanna Papandreou
Pharmacologic Ascorbate Primes Pancreatic Cancer Cells for Death by Rewiring Cellular Energetics and Inducing DNA Damage
Visarut Buranasudja, Claire M. Doskey, Adrienne R. Gibson, Brett A. Wagner, Juan Du, David J. Gordon, Stacia L. Koppenhafer, Joseph J. Cullen, and Garry R. Buettner

A Novel FGFR3 Splice Variant Preferentially Expressed in African American Prostate Cancer Drives Aggressive Phenotypes and Docetaxel Resistance
Jacqueline Olender, Bi-Dar Wang, Travers Ching, Lana X. Garmire, Kaitlin Garofano, Youngmi Ji, Tessa Knox, Patricia Latham, Kenneth Nguyen, Jongh Rhim, and Norman H. Lee

β8 Integrin Mediates Pancreatic Cancer Cell Radiochemoresistance
Sha Jin, Wei-Chun Lee, Daniela Aust, Christian Pilarsky, and Nils Cordes

LETTERS TO THE EDITOR

"MPNST Epigenetics"—Letter
Michel Wassef, Eric Pasmant, and Raphaël Margueron

"MPNST Epigenetics"—Response
Justin Korfhage and David B. Lombard

Correction: Tumor-Secreted LOXL2 Activates Fibroblasts through FAK Signaling

ABOUT THE COVER

IDH1 hotspot mutations are likely early events in gliomagenesis; however, they can be lost in treated secondary glioblastomas. The cover depicts the DNA helix containing CpG island methylation as bright white foci. Though IDH1 mutations are thought to drive a CpG methylation-high phenotype in glioma, Moure and colleagues found that many methylated foci throughout the genome were retained even after CRISPR/Cas9-mediated knockout of the IDH1 mutant allele. See the Highlight on page 1959 and the article on page 2042 for more information. Artist credit: Samantha Moure.