Table of Contents

Highlights of This Issue 565

REVIEW

567 **The Long (lncRNA) and Short (miRNA) of It: TGFβ-Mediated Control of RNA-Binding Proteins and Noncoding RNAs**
Harinarayanan Janakiraman, Reniqua P. House, Vamsi K. Gangaraju, J. Alan Diehl, Philip H. Howe, and Viswanathan Palanisamy

580 **BET Proteins Exhibit Transcriptional and Functional Opposition in the Epithelial-to-Mesenchymal Transition**
Guillaume P. Andrieu and Gerald V. Denis

CELL CYCLE AND SENESCENCE

587 **Mitotically-Associated IncRNA (MANCR) Affects Genomic Stability and Cell Division in Aggressive Breast Cancer**
Kirsten M. Tracy, Coralie E. Tye, Prachi N. Ghule, Heidi L.H. Malaby, Jason Stumpff, Janet L. Stein, Gary S. Stein, and Jane B. Lian

DNA DAMAGE AND REPAIR

634 **Overt Increase of Oxidative Stress and DNA Damage in Murine and Human Colitis and Colitis-Associated Neoplasia**
Adrian Frick, Vineeta Khare, Gregory Paul, Michaela Lang, Franziska Ferko, Siegfried Knasmüller, Andrea Beer, Georg Oberhuber, and Christoph Gasche

GENOMICS

643 **Multigene Profiling of CTCs in mCRPC Identifies a Clinically Relevant Prognostic Signature**

METABOLISM

655 **Microenvironment-Derived Regulation of HIF Signaling Drives Transcriptional Heterogeneity in Glioblastoma Multiforme**
Dieter Henrik Heiland, Annette Gaebelein, Melanie Borries, Jakob Wörner, Nils Pompe, Pamela Franco, Sabrina Heyncke, Mark Bartholomae, Darren O. Aílin, Maria Stella Carro, Marco Prinz, Stefan Weber, Irina Mader, Daniel Delev, and Oliver Schnell

ONCOGENES AND TUMOR SUPPRESSORS

669 **Characterization and Evidence of the miR-888 Cluster as a Novel Cancer Network in Prostate**
Tsuyoshi Hasegawa, Garrison J. Glavich, Mary Pahuski, Aleena Short, O John Semmes, Lifang Yang, Vitold Galkin, Richard Drake, and Aurora Esquela-Kerscher

Downloaded from mcr.aacrjournals.org on December 12, 2021. © 2018 American Association for Cancer Research.
The mTOR Targets 4E-BP1/2 Restrain Tumor Growth and Promote Hypoxia Tolerance in PTEN-driven Prostate Cancer
Mei Ding, Theodorus H. Van der Kwast, Ravi N. Vellanki, Warren D. Foltz, Trevor D. McKee, Nahum Sonenberg, Pier P. Pandolfi, Marianne Koritzinsky, and Bradly G. Wouters

Methylation of the HOXA10 Promoter Directs miR-196b-5p–Dependent Cell Proliferation and Invasion of Gastric Cancer Cells

Cancer Stem Cell Phenotypes in ER+ Breast Cancer Models Are Promoted by PELP1/AIB1 Complexes
Thu H. Truong, Hsiangyu Hu, Nuri A. Temiz, Kyla M. Hagen, Brian J. Girard, Nicholas J. Brady, Kathryn L. Schwertfeger, Carol A. Lange, and Julie H. Ostrander

AR Expression in Breast Cancer CTCs Associates with Bone Metastases

Agonist-induced CXCR4 and CB2 Heterodimerization Inhibits Gα13/RhoA-mediated Migration
Kisha A. Scarlett, El-Shaddai Z. White, Christopher J. Coke, Jada R. Carter, Latoya K. Bryant, and Cimona V. Hinton

Correction: Heparanase Promotes Glioma Progression and Is Inversely Correlated with Patient Survival
This Rapid Impact, by Andrieu and Denis (beginning on page 580), establishes that bromodomain and extraterminal (BET) proteins exert distinct and opposing transcriptional controls on EMT in breast cancer. The EMT is a developmental program that cancer cells often activate to acquire a highly plastic phenotype, notably eliciting metastasis, adaptation to the environment or chemoresistance. The cover image is an artistic rendering that shows epithelial breast cancer cells, exhibiting tight junctions enriched in the protein E-cadherin (staining). Cancer cells undergoing EMT lose their cuboidal shape, disassemble their tight junctions, hallmarks of their epithelial nature, to acquire a plastic mesenchymal phenotype. The study shows that BET proteins functionally oppose each other in the regulation of EMT. BRD2 positively controls several key EMT transcription programs, whereas BRD3 and BRD4 repress them. BET protein inhibitors obtained promising results for the treatment of some cancers, including breast cancer, yet little is known about the individual functions of each member of this particular family. To this end, more research is needed and will lead to the elaboration of improved strategies for cancer treatment.

For more information please visit www.aacrjournals.org
Molecular Cancer Research

16 (4)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://mcr.aacrjournals.org/content/16/4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://mcr.aacrjournals.org/content/16/4. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>