Highlights of This Issue 185

CELL CYCLE AND SENESCENCE

187 ETV4 Facilitates Cell-Cycle Progression in Pancreatic Cells through Transcriptional Regulation of Cyclin D1

CELL DEATH AND SURVIVAL

197 Novel YAP1 Activator, Identified by Transcription-Based Functional Screen, Limits Multiple Myeloma Growth
Junichi Maruyama, Kazutoshi Inami, Fumiyoshi Michishita, Xinliang Jiang, Hiroaki Iwasa, Kentaro Nakagawa, Mari Ishigami-Yuasa, Hiroyuki Kagechika, Norio Miyamura, Jun Hirayama, Hiroshi Nishina, Daichi Nogawa, Kouhei Yamamoto, and Yutaka Hata

DNA DAMAGE AND REPAIR

222 PARP1 Trapping and DNA Replication Stress Enhance Radiosensitization with Combined WEE1 and PARP Inhibitors

233 ERβ Sensitizes NSCLC to Chemotherapy by Regulating DNA Damage Response
Fotis Nikolos, Christoforos Thomas, Igor Bado, and Jan-Åke Gustafsson

METABOLISM

243 Small-Molecule Sigma1 Modulator Induces Autophagic Degradation of PD-L1
Christina M. Maher, Jeffrey D. Thomas, Derick A. Haas, Charles G. Longen, Halley M. Oyer, Jane Y. Tong, and Felix J. Kim

256 Reprograming of Glucose Metabolism by Zerumbone Suppresses Hepatocarcinogenesis
Nissar Ahmad Wani, Bo Zhang, Kun-yu Teng, Juan M. Barajas, Tasneem Motiwala, Peng Hu, Lianbo Yu, Rafael Brischweiler, Kalpana Ghoshal, and Samson T. Jacob

GENOMICS

269 Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics
Michael Q. Ding, Lujia Chen, Gregory F. Cooper, Jonathan D. Young, and Xinghua Lu

279 Targeted Next-Generation Sequencing for Detecting MLL Gene Fusions in Leukemia
Sadia Afrin, Christine R.C. Zhang, Claus Meyer, Caedyn L. Stinson, Thy Pham, Timothy J.C. Bruxner, Nicola C. Venn, Toby N. Trehair, Rosemary Sutton, Rolf Marschalek, J. Lynn Fink, and Andrew S. Moore

ONCOGENES AND TUMOR SUPPRESSORS

286 FBXO31 Suppresses Gastric Cancer EMT by Targeting Snail1 for Proteasomal Degradation
Shuiyan Zou, Cuming Ma, Fenghua Yang, Xia Xu, Jihui Jia, and Zhifang Liu

296 Chemokine Signaling Facilitates Early-Stage Breast Cancer Survival and Invasion through Fibroblast-Dependent Mechanisms
Gage Brummer, Diana S. Acevedo, Qingting Hu, Mike Porsutsche, Wei Bin Fang, Min Yao, Brandon Zinda, Megan Myers, Nehemiah Alvarez, Patrick Fields, Yan Hong, Fariba Behbod, and Nikki Cheng

309 Adipose-Derived VEGF–mTOR Signaling Promotes Endometrial Hyperplasia and Cancer: Implications for Obese Women
SIGNAL TRANSDUCTION

322 A Novel Signaling Complex between TROY and EGFR Mediates Glioblastoma Cell Invasion
Zonghui Ding, Alison Roos, Jean Kloss, Harshil Dhruv, Sen Peng, Patrick Pirrotte, Jennifer M. Eschbacher, Nhan L. Tran, and Joseph C. Loftus

333 Competitive Kinase Enrichment Proteomics Reveals that Abemaciclib Inhibits GSK3β and Activates WNT Signaling
Emily M. Cousins, Dennis Goldfarb, Feng Yan, Jose Roques, David Darr, Gary L. Johnson, and Michael B. Major

345 Genotoxic Damage Activates the AMPK-α1 Isoform in the Nucleus via Ca²⁺/CaMKK2 Signaling to Enhance Tumor Cell Survival
Diana Vara-Ciruelos, Madhumita Dandapani, Alexander Gray, Ejaife O. Egbani, A. Mark Evans, and D. Grahame Hardie

ABOUT THE COVER
Confocal image of PD-L1 (green) in autophagosomes (red) in MDA-MB-231 triple-negative breast cancer cells treated with a Sigma1 modulator (IPAG). Nuclei are labeled in blue. Beginning on page 243, Maher and colleagues demonstrate that small-molecule Sigma1 modulators can be used to regulate PD-L1 in cancer cells and trigger its degradation by selective autophagy.
Molecular Cancer Research

16 (2)

Updated version Access the most recent version of this article at:
http://mcr.aacrjournals.org/content/16/2

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://mcr.aacrjournals.org/content/16/2.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.