
















Figure 5.

Pancancer isoform switches with predicted consequences. A, Reoccurrence of isoform switches across cancer types. x-axis shows the number of isoform switches
with predicted consequences that are identified as reoccurring in the numbers of cancer types indicated on the y-axis. B, Gene ontology enrichment in genes
subject to pancancer isoform switching. Left, y-axis shows significant GO terms or gene sets. x-axis shows the enrichment of y-axis set or terms
in genes subject to pancancer switching versus all genes tested for isoform switches. Significance levels were estimated by two-sided Fisher exact tests. � , FDR-
corrected P < 0.05. Right, simplified classification of the gene sets in respective enrichment test set. (Continued on the following page.)

Vitting-Seerup and Sandelin

Mol Cancer Res; 15(9) September 2017 Molecular Cancer Research1214

on September 20, 2019. © 2017 American Association for Cancer Research. mcr.aacrjournals.org Downloaded from 

Published OnlineFirst June 5, 2017; DOI: 10.1158/1541-7786.MCR-16-0459 



investigate what gain/loss ratio would be expected if isoform
switching occurred randomly (i.e., if it were not regulated), we
calculated, for each cancer-type, the expected distribution of gain/
loss ratios by randomly sampling the same number of isoform
pairs from nonswitching protein-coding genes 1,000 times. Com-
pared with this background, loss of protein domains was signif-
icantlymore frequent than domain gain in all 12 cancer types (P <
0.001, by sampling; Fig. 4B; Supplementary Fig. S2B). Important-
ly, the observed prevalence of protein domain loss was only
partially explained by the commonly observed isoform switches
resulting in protein-coding to noncoding change (ORF loss; Fig.
4A, third column, Supplementary Fig. S2C).

Switches resulting in ORF loss occurred significantly more
often than expected in all 12 cancer types (FDR < 5.82e�10,
Fisher exact test; Fig. 4C, black dots). Using a more conservative
ORF loss threshold (requiring ORF loss as well as loss of coding
potential, as calculated by CPAT; ref. 36), this held true for 10
of the 12 cancer types (FDR < 0.05, Fisher exact test; Fig. 4C,
gray dots; Supplementary Fig. S2D). Considering the overrep-
resentation of ORF loss, and that upregulated isoforms in
cancer typically were shorter (Supplementary Fig. S2E), it was
particularly interesting that isoform switching resulting in gain
of signal peptides occurred significantly more often than
expected in 9 of the 12 cancer types (FDR < 0.05, Fisher exact
test; Fig. 4D).

The regulatory mechanisms controlling the production of
alternative isoforms are often assumed to originate from AS.
Thus, the contribution from aTSS or aTTS has not been com-
prehensively investigated. To analyze the contribution of the
individual mechanisms, we decomposed the isoforms involved
in isoform switches with predicted consequences into those
originating from AS, aTSS, aTTS, and combinations thereof. AS
and aTSS were the main contributors: 78.4% and 70.3% of
isoform switches involved AS and aTSS, respectively, while 52%
of isoform switches involved both (Fig. 4E and F). For switches
where only one mechanism was used, aTSS and AS accounted
for 40.4% and 51.5%, respectively. In comparison, aTTS con-
tributed much less: globally only 17.3% of switches utilize
aTTS, and aTTS could itself only explain 8.1% of the single
mechanism switches (Fig. 4E and F).

Pancancer isoform switches with predicted
functional consequences

We reasoned that isoform switches, with predicted functional
consequences, which were observed across two or more cancer
types, referred to as pancancer switches, were of particular
interest. We identified 945 genes containing such switches
(Fig. 5A; Supplementary Table S4), which were enriched for
genes involved in signal transduction and stemness, and were

over-represented in known cancer signature gene lists (Fig. 5B).
In these pancancer isoform switches, the predicted protein
domain gain/loss ratio was particularly skewed toward domain
loss (Fig. 5C; 78.26%of events, P < 0.001, bootstrap test), a ratio
higher than the domain gain/loss ratio for 10 of the 12 indi-
vidual cancer types analyzed (Supplementary Fig. S3A). In the
pancancer isoform switches, we identified 11 protein domains
that, compared with single cancer isoform switches, were lost
from significantly more genes than expected by chance (FDR <
0.05, Fisher exact test; Fig. 5D, left). These domains were linked
to signal transduction (e.g., protein kinase domains), extracel-
lular space (e.g., immunoglobulin domains), and protein–pro-
tein interaction (e.g., PH domains; Fig. 5D, right).

We hypothesized that genes containing pancancer switches
may be functionally connected. To assess this, we used the
STRING database (39), a resource summarizing protein–pro-
tein interaction evidence from multiple sources. Using genes
containing pancancer switches observed in at least four cancer
types, we identified a high-confidence protein interaction net-
work (7.45� more interactions than expected, P < 5.8e�04,
STRING online analysis; Fig. 5E; Supplementary Fig. S3B). The
protein interaction network, which mainly consisted of genes
involved in cell signaling, contained VEGFA and AKT1 (also
known as PKB1 or PKBa) as central nodes (Fig. 5E). The
previously uncharacterized isoform switch in AKT1 is of par-
ticular interest, as AKT1 is a known tumor suppressor that
inhibits tumor invasion (42). We found this isoform switch
in five different cancer types (COAD, KICH, KIRC, KIRP, and
THCA) and our detailed analysis revealed that the upregulated
isoform lacked the PH domain present in the normal isoform
(Fig. 5F). As PH domains typically facilitate protein–protein
interactions, this could indicate that the ability of the cancer
form of AKT1 to colocalize with its normal signal transduction
partners is decreased, perhaps decreasing its suppressor effect.
However, the causality and functional importance of this
switch remains to be tested.

Isoform switches associated with worse pancancer
patient survival

As analyses of patient survival rates using exon-level expression
data have previously been shown to complement gene-level
expression (43), we hypothesized that isoform switches could
be predictors of patient survival. To investigate this, we analyzed
each cancer patient for the presence of any of the identified 2,792
isoformpairs involved in switcheswithpredicted consequences as
follows. First, for each cancer type, we analyzed the average
isoform fractions of the isoform pair in all control samples. Next,
for each of the 5,232 cancer patients for whom survival data was
available (Table 1), we compared these IFs to the distributions

(Continued.)C, Loss of protein domains in pancancer isoform switches. y-axis shows the number of genes subject to a pancancer isoform switch resulting in a protein
domain gain, loss, or switch as indicated on by the x-axis. "Switch" indicates genes where both gain and loss occurred. Significance levels were estimated
by a bootstrapping approach (see main text). ��� , P < 0.001. D, Specific protein domains are lost in pancancer isoform switches. Left, x-axis shows the over-
representation of the loss of a specific protein domain in the genes with pancancer isoform switches compared with the frequency of loss in all genes with isoform
switches, as a log2 OR. y-axis shows the protein domains lost significantly more often than expected. Error bars, 95% confidence interval of the OR. The significance
was estimated via a Fisher exact test. ��� , FDR<0.001; � , FDR<0.05. Right, simplified classification of the protein domains.E, Interaction network of genes involved in
pancancer isoform switches. The network is created by genes containing an isoform switch with predicted consequences in at least four cancer types using the
STRING database of protein–protein interactions. Only networks of genes with a minimum five interactions are shown. Asterisks (�) indicate previously
described isoform switches (see Supplementary Fig S3). F, Example of switch identified from network analysis. Top, two analyzed isoforms for the AKT1 gene:
genomic features are rescaled to the square root of their original size in base pairs. PFAM domains are indicated by grayscale. UCSC gene transcript IDs are
shown for each isoform. Left, the average expression in healthy tissues and KIRP tumors on gene level (bottom). Bottom, the average expression in healthy
tissues and KIRP tumors on isoform level (middle). Bottom, shows the average isoform fraction in healthy tissues and KIRP tumors (right). ns, not significant;
��� , FDR < 0.001 [EdgeR for expression tests and Mann–Whitney two-sided test (as described in main text) for isoform fraction analysis]. Error bars, 95%
confidence intervals.
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from corresponding healthy samples. If the IF in a particular
cancer patient was different from healthy samples [defined as a
|Z-score| > 3 and a combined dIF score of the two isoforms > 0.2
compared with the average of healthy samples], we classified the
individual cancer patient as having the isoform switch. We then
compared the survival rates of patients with and without the
isoform switch within each cancer type and across all cancers (a
pancancer analysis) taking age at diagnosis, cancer type, gender,
and the expression of the parent gene into account (see Materials
andMethods). This resulted in the identification of 1,195 isoform
switches significantly associated with worse patient survival in at
least one cancer type. Of these, we found 111 isoform switches
that were significantly associated with worse patient survival in
the pancancer analysis (Supplementary Table S5).

Encouraged by these findings, and the large number of pan-
cancer isoform switches identified, we hypothesized that for some
isoform switches, the associations with worse survival rates might
be independent of cancer type. In other words, there may be cases
where an isoform switch is associated with worse survival rates
regardless of which cancer type it was identified in.

We reasoned that if the confidence (as estimated by P value)
of the association between an isoform switch and worse sur-
vival rates was larger in the pancancer analysis (smaller P value)
compared with any of the corresponding single cancer analysis,
the association was independent of cancer types. Importantly,
such a result would not be explained by differences in the
number of patients analyzed as our pancancer analysis is
stratified by cancer type and thereby only reflects cancer types
where patients with the switch are identified (Supplementary
Fig. S4).

To identify such isoform switches, we compared the P value
of the pancancer analysis to the P value of the most significant
single cancer analysis. This resulted in the identification of 31
isoform switches that were significantly associated with worse
survival rates independent of cancer types (Fig. 6A; Supple-
mentary Table S5).

As an isoform switch is not a binary event, we hypothesized
that the magnitude of isoform switches could be an important
parameter for survival analysis. To analyze this, we divided
cancer patients based on the magnitude of the isoform switch
for each of the 31 pancancer predictors: isoform switches with a
combined dIF score of the two analyzed isoforms >0.5 were
defined as "large" switches and remaining cases as "normal."
On the basis of this stratification, we reanalyzed the survival
rates and obtained significant results for the individual analysis
of both normal and large switches for 13 of 30 pancancer
predictors (details in Materials and Methods). As hypothesized,
9 of 13 (69%) cases showed clear differences in median survival

rates with worse outcome for patients with larger switches
(Supplementary Table S5).

To illustrate the results of our survival analysis, we here provide
an in depth description of four isoform switches with potential
functional consequences where each switch was predictive of
patient survival independent of cancer type.

The ZNF12 gene is a transcriptional repressor that, through its
KRABdomain, suppresses AP-1 and SRE-mediated transcriptional
activity (44). An isoform switch in ZNF12 (identified in 5 cancer
types, Supplementary Table S5) resulted in the loss of the tran-
scriptional inhibitory KRAB domain (Fig. 6B, top). In the pan-
cancer analysis, this isoform switch was associated with worse
survival rates than any of the single-cancer analysis (HR, 1.58; HR
P < 0.0013) (Fig. 6B, bottom).

Another isoform switch resulting in the loss of a protein
domain was found in ERCC1, a gene with a central role in the
nucleotide excision repair system, where mutations have previ-
ously been associatedwithworse survival rates (45).We identified
this isoform switch in 1,091patients (corresponding to an average
23.5% patients in each of the 12 individual cancer types, Sup-
plementary Table S5). This isoform switch was predicted to result
in a protein lacking the HHH domain in cancer states (Fig. 6C,
top). As theHHHdomain is a sequence-nonspecificDNA-binding
element, this switch could potentially compromise the function
of ERCC1. Patients with this isoform switch consistently had
lower survival rates than patients without it, in both the analysis
of HNSC (the single cancer type where the survival difference was
the most significant) and the pancancer analysis (HR: 1.28; HR
P < 0.001; Fig. 6C, bottom).

FAM36A, which encodes an assembly factor important for
the last step of the electron transport chain in oxidative phos-
phorylation, had an isoform switch that was found in more
than 1,000 patients across all 12 cancer types analyzed (Sup-
plementary Table S5). This isoform switch, which constitutes a
change from a noncoding to a coding isoform (Fig. 6D top),
was associated with worse survival rates across cancer types
(HR: 1.4; HR P < 1.63e�06; Fig. 6D, bottom), supporting recent
findings that oxidative phosphorylation might play an impor-
tant role in cancer progression (46). Importantly, the size of the
isoform switch seems to be associated with worse patient
outcome (Fig. 6E).

One of the most extreme pancancer predictors identified was
the isoform switch in the SHC1 gene. This isoform switch was
found in 11 cancer types (Supplementary Table S5) and associ-
ated with a median survival rate of 0.58 (Fig. 6A). The isoform
switch was predicted to result in increased usage of the longer
isoform, which is often referred to as p66Shc (Fig. 6F, top). This
long isoform included an additional 110 N-terminal amino acid

Figure 6.
Isoform switches as predictors of patient survival. A, Isoform switches predictive of pancancer survival. y-axis shows the median survival rate (top plot) and HR
(bottom plot) as a barplot for each of 31 genes (x-axis) containing isoform switches predictive of pancancer survival. Genes in bold are shown as examples in
panels B–G. B, C,D, and F, Examples of isoform switches as predictors of pancancer survival. Isoform switches in ZNF12 (B), ERCC1 (C), FAM36A (D), and SH1 (F) are
shown. Top, the two isoforms switching for respective gene. Genomic features are rescaled to the square root of their original size in base pairs. PFAM
domains are indicated in grayscale. UCSC gene transcript IDs are shown for each isoform as well as an indication of which isoforms are used more/less. Bottom,
Kaplan–Meier plot showing the survival probability (y-axis) as a function of time since diagnosis in years (x-axis). Gray lines indicates patients with an isoform
switch, black lines indicate patients without it. Full lines show the results from pancancer analysis; dashed lines show the result from the single cancer where the
isoform was the most predictive of cancer survival. Inset shows the number of events identified. P values indicating the significance of the difference in
survival rates (log likelihood test) between patientswith andwithout the isoform switch are shown. Note theP values in themain text and figures are different as they
measure different properties.E andG,Example of pancancer survival prediction as a function of isoform switchmagnitude. Kaplan–Meier plot (as inB) for the isoform
switches in FAM36A (E) and SH1 (G) (see D and F) stratified by switch magnitude size as indicated by linetype. P values indicating the significance of the
difference in survival rates (log likelihood test) are shown. Note the P values in the main text and figures are different as they measure different properties.
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region, and is known to play a central role in prostate cancer
metastasis as well as many other cellular functions (47). In
agreement with these results, we found the isoform switch to be
associated with poor patient survival across cancer types (HR:
1.58;HR P <4.70e�06; Fig. 6F, bottom) a trendworse for patients
with large isoform switches (Fig. 6G).

Resources and software for mining isoform
switches in cancer

To facilitate the analysis of isoform switches with potentially
functional consequences in cancer, we provide access to the
data presented here in several ways, aimed at different types of
users. For easy and fast exploration of isoform switches in
cancer, we generated three interactive online web services,
which produce isoform switch plots (similar to Figs. 3D
or 5F), where the genes can be selected with specific focuses,
either: (i) gene-oriented, (ii) cancer-type oriented, (iii) pan-
cancer oriented. These tools are available at http://www.binf.
ku.dk/services/#switch_cancer. We also provide all the results
presented here as Supplementary Data for power users (Sup-
plementary Tables S1–S5). To streamline analysis of isoform
switches with predicted consequences (Fig. 2B) and for others
to be able to apply our methods to other RNA-seq datasets, we
implemented our methods as an R package, IsoformSwitch-
AnalyzeR, which enables statistical identification of isoform
switches with predicted functional consequences from RNA-seq
data. IsoformSwitchAnalyzeR is available through Bioconduc-
tor http://bioconductor.org/packages/IsoformSwitchAnalyzeR/
and is to our knowledge the first published tool enabling
statistical identification of the specific isoforms involved in a
switch (Supplementary Fig. S5A).

Details about IsoformSwitchAnalyzeR can found in the
vignette (Supplementary Text S1) and Supplementary Text S2.
Finally, two SwitchAnalyzeRlist objects, which canbe explored via
IsoformSwitchAnalyzeR, and contains the full switch analysis of
TCGA onwhich all of the above analysis is made, are available via
figshare; http://doi.org/10.6084/m9.figshare.4924724.

Discussion
Despite the large amount of RNA-seq data and computa-

tional methods available, isoform-based expression analysis is
rare. This means that the potential of existing RNA-seq data is
untapped, and as a consequence, our general understanding of
differential isoform usage is poor. The few efforts at analyzing
individual isoform switches have typically dealt with isoforms
by describing their frequent occurrence rather than trying to
systematically predict their consequence. Overall, this is unsa-
tisfying, as isoform usage is important in disease and especially
cancer, where many individual isoform switches have been
described.

Here we present methods for the statistical identification and
analysis of isoform switches with predicted functional conse-
quences. We utilized these methods to make the most compre-
hensive analysis of isoform switches in cancer to date, analyzing
data for more than 5,500 cancer patients. According to our
analysis, isoform switches with predicted functional conse-
quences are common, occur in genes important for cancer,
and are often shared between cancer types. Such isoform
switches often lead to protein domain loss and/or ORF loss.
Conversely, signal peptides are more often gained than lost in

cancer-upregulated isoforms. Many of these switches have previ-
ously been described as functionally important, and in many
instances causal for cancer development and/or progression.
Regardless of causality, a subset of such isoform switches was
proven to predict patient survival independent of cancer type. As
the survival rates were associated with the magnitude of switches,
these switches may be useful as biomarkers.

Although we found that isoform switching with predicted
functional consequences is common, we believe our results are
a conservative estimate for several reasons: First, the analysis
presented here is based on UCSC KnownGenes isoform models
released in 2009, while the most recent GENCODE annotation
have >2.5� more transcripts annotated and contains approxi-
mately 50% more multi-isoform genes. Similarly, it is likely that
many novel isoforms, which are not in the current annotation, are
used in cancer patients. Consequently, we may not be analyzing
the full spectrum of isoforms, which limits our ability to detect
isoform switches. Second, in the analysis presented here, we did
not analyze cancer subtypes becausewe prioritized a high number
of paired samples to account for interpatient and batch effects.
This means we only identify isoform switches shared by the
majority of patients in each cancer type. Thus, we will not identify
isoform switches found in smaller subtypes. One such example is
the isoform switch in ERCC1,which we first globally identified in
LUAD and KICH, but deeper analysis showed that the isoform
switch existed in subsets of patients from all 12 cancer types
analyzed. Finally, we have focused on isoform switches with
predicted functional consequences. Such predictions are limited,
as we cannot predict all functional features of genes. For example,
we identified an isoform switch from a short to a long isoform in
the insulin receptor (INSR) in eight cancer types (Supplementary
Fig. S5B), an isoform switch suggested to have a role both in fetal
growth and cancer biology (48). However, because we did not
predict a functional consequence of this switch, it was not ana-
lyzed further.

Overall, our results strongly indicate that isoform switches
with predicted functional consequences are both common and
important in dysfunctional cells, illustrating the potential of
augmenting gene-level analysis with isoform-level analysis.
This idea is especially appealing in the light of recent findings
showing that utilization of isoform-level expression data also
might lead to more reliable gene-level expression estimates
(49). While there is ample room for improvements in algo-
rithms for isoform reconstruction and quantification, our
results suggest that current methods are still adequate for
isoform-level–based analysis.

We expect our datasets will be a significant resource for cancer
biology research and that the methods described here will be
useful for analyzing other RNA-seq sets, enabling analysis of
isoform switches with predicted functional consequences in other
diseases or physiologic states.
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