Rapid IMPACT

967 IGH/MYC Translocation Associates with BRCA2 Deficiency and Synthetic Lethality to PARP1 Inhibitors
Silvia Maifrede, Kayla Martin, Paulina Podstwyalow-Bartrnica, Katherine Sullivan-Reed, Samantha K. Langer, Reza Nejati, Yashodhara Dasgupta, Michael Hulse, Daniel Gritsyuk, Margaret Nieborowska-Skorska, Lena N. Lupey-Green, Huaqing Zhao, Katarzyna Piwocka, Mariusz A. Wasik, Italo Tempera, and Tomasz Skorski

CELL DEATH AND SURVIVAL

973 Therapeutic Targeting of PTK7 is Cytotoxic in Atypical Teratoid Rhabdoid Tumors
Shanta M. Messerli, Mariah M. Hoffman, Etienne Z. Gnimpieba, and Ratan D. Bhardwaj

CHROMATIN, EPIGENETICS, AND RNA REGULATION

984 Combined AURKA and H3K9 Methyltransferase Targeting Inhibits Cell Growth By Inducing Mitotic Catastrophe
Angela Mathison, Ann Salmonson, Mckenna Missfeldt, Jennifer Bintz, Monique Williams, Sarah Kossak, Asha Nair, Thiago M. de Assuncao, Trace Christensen, Navtej Buttar, Juan Iovanna, Robert Huebert, and Gwen Lomberk

998 Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression
Vita Fedele, Fangping Dai, Ani P. Masilamani, Dieter H. Heiland, Eva Kling, Ana M. Gatjens-Sanchez, Roberto Ferrarezi, Leonardo Platania, Doostkam Soroush, Hyeunsoo Kim, Sven Nelander,_projekt_Silvia M. Massironi, Sarah Kossak, Navtej Buttar, Robert Huebert, and Gwen Lomberk

GENOMICS

1012 Next-Generation Sequencing Analysis and Algorithms for PDX and CDX Models
Garima Khandelwal, Maria Romina Girotti, Christopher Smowton, Sam Taylor, Christopher Wirth, Marek Dynowski, Reza Nejati, Yashodhara Dasgupta, Michael Hulse, Daniel Gritsyuk, Margaret Nieborowska-Skorska, Lena N. Lupey-Green, Huaqing Zhao, Katarzyna Piwocka, Mariusz A. Wasik, Italo Tempera, and Tomasz Skorski

METABOLISM

1017 Glutamine Transporters Are Targets of Multiple Oncogenic Signaling Pathways in Prostate Cancer
Mark A. White, Chenchu Lin, Kimal Rajapakse, Jianrong Dong, Yan Shi, Efrosini Tsouko, Ratna Mukhopadhyay, Diana Jasso, Wajahat Dawood, Cristian Coarfa, and Daniel E. Frigo

ONCOGENES AND TUMOR SUPPRESSORS

1029 miR-202 Diminishes TGFβ Receptors and Attenuates TGFβ1-Induced EMT in Pancreatic Cancer
Hardik R. Mody, Sau Wai Hung, Rakesh K. Pathak, Jasmine Griffin, Zobeda Cruz-Monserrate, and Raigopal Govindarajan

1040 High-Affinity Internalizing Human scFv-Fc Antibody for Targeting FGFR1-Overexpressing Lung Cancer
Aleksandra Sokolowska-Wedzina, Grzegorz Chodaczek, Julia Chudzian, Aleksandra Borek, Malgorzata Zakrzewska, and Jacek Otlewski

1051 p53 Maintains Baseline Expression of Multiple Tumor Suppressor Genes
Kyrke Pappas, Jia Xu, Sakellarios Zairis, Lois Resnick-Silverman, Francesco Abate, Nicole Steinbach, Sait Ozturk, Tao Su, Pamela Cheung, Hank Schmidt, Stuart Aaronson, Hanina Hibshoosh, James Manfredi, Raul Rabadon, and Ramon Parsons

1063 Aurora Kinase A Promotes AR Degradation via the E3 Ligase CHIP
Sukumar Sarkar, David L. Brautigan, and James M. Larner

1073 Regulation of USP37 Expression by REST-Associated G9a-Dependent Histone Metylation
Tara H.W. Dobson, Rashieda J. Hatcher, Jyothishmathi Swaminathan, Chandra M. Das, Shavali Shah, Rong-Hua Tao, Ciro Miltie, Sabrina Castellano, Peter H. Taylor, Gianluca Sbardella, and Vidy A. Gopalakrishnan

SIGNAL TRANSDUCTION

1085 EGFR Signals through a DOCK180-MLK3 Axis to Drive Glioblastoma Cell Invasion
Saeed A. Misak, Jian Chen, Laura Schroeder, Chotirat Rattanasinchai, Ashley Sample, Jann N. Sarkaria, and Kathleen A. Gallo
ABOUT THE COVER

This study, by Pappas and colleagues (beginning on page 1051), demonstrates that the p53 tumor suppressor maintains baseline expression of numerous other well-validated tumor suppressor genes. Mammary epithelial cells grown in 3D culture form acinar structures that are suitable model systems to study signaling and growth properties. We used CRISPR/Cas9-mediated genetic modifications in the nontumorigenic mammary epithelial cell line MCF10A and found that interruption of the baseline activation of PTEN by p53 increases tumorigenic properties by influencing the size of the acini, proliferation, and signaling in 3D culture. Photographs shown are created by immunofluorescence of the acini structures for various signaling proteins.
Molecular Cancer Research

15 (8)

Updated version Access the most recent version of this article at:
http://mcr.aacrjournals.org/content/15/8

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, use this link http://mcr.aacrjournals.org/content/15/8.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.