Highlights of This Issue 787

CELL CYCLE AND SENESCENCE

789 LncRNA GAS5 Inhibits Cellular Proliferation by Targeting P27kip1
Gang Luo, Dong Liu, Chao Huang, Miao Wang, Xingyuan Xiao, Fuqing Zeng, Liang Wang, and Guosong Jiang

CHROMATIN, EPIGENETICS, AND RNA REGULATION

800 Aberrant Methylation-Mediated Silencing of lncRNA MEG3 Functions as a ceRNA in Esophageal Cancer
Zhiming Dong, Aili Zhang, Shengnan Liu, Fan Lu, Yanli Guo, Guoqiang Zhang, Fenglou Xu, Yabin Shi, Supeng Shen, Jia Liang, and Wei Guo

811 Blind SELEX Approach Identifies RNA Aptamers That Regulate EMT and Inhibit Metastasis
Sorah Yoon, Brian Armstrong, Nagy Habib, and John J. Rossi

821 Nucleome Analysis Reveals Structure–Function Relationships for Colon Cancer
Laura Seaman, Haiming Chen, Markus Brown, Darawalee Wangsa, Geoff Patterson, Jordi Camps, Gilbert S. Omenn, Thomas Ried, and Indika Rajapakse

DNA DAMAGE AND REPAIR

831 Mitochondrial DNA Integrity Is Maintained by APE1 in Carcinogenic-Induced Colorectal Cancer
Joan Ballista-Hernández, Margaly Martínez-Ferrer, Roman Velez, Consuelo Climent, Maria M. Sánchez-Vázquez, Ceidy Torres, Adlin Rodriguez-Muñoz, Sylvette Ayala-Peña, and Carlos A. Torres-Ramos

842 DNA Damage Induces a Secretory Program in the Quiescent TME that Fosters Adverse Cancer Phenotypes
Luis Gomez-Sarosi, Yu Sun, Ilsa Coleman, Daniella Bianchi-Frias, and Peter S. Nelson

GENOMICS

852 Quantitative Proteome Heterogeneity in Myeloproliferative Neoplasm Subtypes and Association with JAK2 Mutation Status
Nuria Socoro-Yuste, Vladan P. Čokić, Julie Mondet, Isabelle Plo, and Pascal Mossuz

METABOLISM

862 Metformin Reduces Prostate Tumor Growth, in a Diet-Dependent Manner, by Modulating Multiple Signaling Pathways
Andre Sarmenio-Cabral, Fernando L-López, Manuel D. Gahete, Justo P. Castaño, and Raúl M. Luque

ONCOGENES AND TUMOR SUPPRESSORS

875 Abituzumab Targeting of αv-Class Integrins Inhibits Prostate Cancer Progression
Yuan Jiang, Jinlu Dai, Zhi Yao, Greg Shelley, and Evan T. Keller

884 Versican Promotes Tumor Progression, Metastasis and Predicts Poor Prognosis in Renal Carcinoma
Yozo Mitsui, Hiroaki Shiina, Taku Kato, Shigekatsu Maekawa, Yutaka Hashimoto, Marisa Shina, Mitsuko Imai-Sumida, Priyanka Kulkarni, Priitha Dasgupta, Ryan Kenji Wong, Miho Hiraki, Naoko Arichi, Sharanjot Saini, Guoren Deng, Rajvir Dahya, Koichi Nakajima, and Yuichiro Tanaka

896 IGFBP3 Modulates Lung Tumorigenesis and Cell Growth through IGF1 Signaling
Yong Antican Wang, Yunguang Sun, Joshua Palmer, Charalambs Bosomides, Li-Ching Huang, Yu Shyr, Adam P. Dicker, and Bo Lu

905 Deubiquitinase USP18 Loss Mislocalizes and Destabilizes KRAS in Lung Cancer
Lisa Maria Mustachio, Yun Lu, Laura J. Tafe, Vincent Memoli, Jaime Rodriguez-Canales, Barbara Mino, Pamela Andrea Villalobos, Ignacio Wistuba, Hiroaki Katayama, Samir M. Hanash, Jason Roszik, Masanori Kawakami, Kwang-jin Cho, John F. Hancock, Fadzai Chinyengetere, Shanhui Hu, Xi Liu, Sarah J. Freemantle, and Ethan Dmitrovsky
SIGNAL TRANSDUCTION

915 Distinct Afatinib Resistance Mechanisms Identified in Lung Adenocarcinoma Harboring an EGFR Mutation
Toshimitsu Yamaoka, Tohru Ohmori, Motoi Ohba, Satoru Arata, Yasunori Murata, Sojiro Kusumoto, Koichi Ando, Hiroto Ishida, Tsukasa Ohnishi, and Yasutsuna Sasaki

929 Insulin Receptor and GPCR Crosstalk Stimulates YAP via PI3K and PKD in Pancreatic Cancer Cells
Fang Hao, Qinhong Xu, Yinglan Zhao, Jan V. Stevens, Steven H. Young, James Sinnett-Smith, and Enrique Rozengurt

942 Calcium Sensor, NCS-1, Promotes Tumor Aggressiveness and Predicts Patient Survival
Lauren M. Moore, Allison England, Barbara E. Ehrlich, and David L. Rimm

953 The Microtubule Network and Cell Death Are Regulated by an miR-34a/Stathmin 1/III-Tubulin Axis
Nancy S. Vetter, E.A. Kolb, Christopher C. Mills, and Valerie B. Sampson

ABOUT THE COVER
Carcinomas develop in a complex tumor microenvironment (TME) that includes a diverse spectrum of cell types that influence tumor cell behavior. Notably, in response to genotoxic cancer-directed therapeutics, proliferating tumor cells undergo a complex but coordinated response leading to repair, senescence, or apoptosis. In contrast to tumor cells, the vast majority of benign cells in the TME, including fibroblasts and vascular endothelium, are quiescent, and initiate a damage response program that includes the secretion of cytokines and growth factors capable of promoting the resistance of surviving tumor cells to further cycles of treatment. The cover image shows the expression of genes involved in cell cycle progression (CCP) in microdissected cell populations from prostate cancers that comprise benign prostate epithelial cells, cancer adjacent stroma, and carcinoma. In comparison to prostate cancer, benign epithelium and cells in the prostate stroma exhibit very low CCP activity, indicating they are in a Go, quiescent, terminally differentiated state. Please see the article by Gomez-Sarosi and colleagues (beginning on page 842) for more information.