Molecular Cancer Research

Table of Contents

July 2017 • Volume 15 • Number 7

Highlights of This Issue 787

CELL CYCLE AND SENESCENCE

- **789** LncRNA GAS5 Inhibits Cellular Proliferation by Targeting P27kip1
 Gang Luo, Dong Liu, Chao Huang, Miao Wang, Xingyuan Xiao, Fuqing Zeng, Liang Wang, and Guosong Jiang

CHROMATIN, EPIGENETICS, AND RNA REGULATION

- **800** Aberrant Methylation-Mediated Silencing of lncRNA MEG3 Functions as a ceRNA in Esophageal Cancer
 Zhiming Dong, Aili Zhang, Shengnan Liu, Fan Lu, Yanli Guo, Guoqiang Zhang, Fenglou Xu, Yabin Shi, Supeng Shen, Jia Liang, and Wei Guo

DNA DAMAGE AND REPAIR

- **831** Mitochondrial DNA Integrity Is Maintained by APE1 in Carcinogenic-Induced Colorectal Cancer
 Joan Ballista-Hernández, Margaly Martínez-Ferrer, Roman Velez, Consuelo Climent, Maria M. Sánchez-Vázquez, Cecidy Torres, Adilin Rodríguez-Muñoz, Silviana Ayala-Peña, and Carlos A. Torres-Ramos

DNA DAMAGE AND REPAIR

- **842** DNA Damage Induces a Secretory Program in the Quiescent TME that Fosters Adverse Cancer Phenotypes
 Luis Gomez-Sarosi, Yu Sun, Ilsa Coleman, Daniella Bianchi-Frias, and Peter S. Nelson

GENOMICS

- **852** Quantitative Proteome Heterogeneity in Myeloproliferative Neoplasm Subtypes and Association with JAK2 Mutation Status
 Nuria Socoro-Yuste, Vladan P. Ćokić, Julie Mondet, Isabelle Plo, and Pascal Vossouz

METABOLISM

- **862** Metformin Reduces Prostate Tumor Growth, in a Diet-Dependent Manner, by Modulating Multiple Signaling Pathways
 Andre Sarmento-Cabral, Fernando L-López, Manuel D. Gaete, Justo P. Castaño, and Raúl M. Luque

ONCOGENES AND TUMOR SUPPRESSORS

- **875** Abituzumab Targeting of oV-Class Integrins Inhibits Prostate Cancer Progression
 Yuan Jiang, Jiuju Dai, Zhi Yao, Greg Shelley, and Evan T. Keller

- **884** Versican Promotes Tumor Progression, Metastasis and Predicts Poor Prognosis in Renal Carcinoma
 Yozo Mitsui, Hiroaki Shiina, Taku Kato, Shigeakasu Maekawa, Yutaka Hashimoto, Marisa Shihina, Mitsuo Imai-Sumita, Priyanka Kulkarni, Pritha Dasgupta, Ryan Kenji Wong, Miho Hiraki, Naoko Arichi, Sharanjot Saini, Guoren Deng, Rajvir Dahiya, Koichi Nakajima, and Yuichiro Tanaka

- **896** IGFBP3 Modulates Lung Tumorigenesis and Cell Growth through IGF1 Signaling
 Yong Antican Wang, Yunguang Sun, Joshua Palmer, Charalampos Solomides, Li-Ching Huang, Yu Shyr, Adam P. Dicker, and Bo Lu

- **905** Deubiquitinase USP18 Loss Mislocalizes and Destabilizes KRAS in Lung Cancer
 Lisa Maria Mustachio, Yun Lu, Laura J. Tafro, Vincent Memoli, Jaime Rodriguez-Canales, Barbara Mino, Pamela Andrea Villalobos, Ignacio Wistuba, Hiroki Katayama, Samir M. Hanash, Jason Rosai, Masanori Kawakami, Kwang-jin Cho, John F. Hancock, Fadzai Chinyengetere, Shanhu Hu, Xi Liu, Sarah J. Freemantle, and Ethan Dmitrovsky

Downloaded from mcr.aacrjournals.org on November 8, 2021. © 2017 American Association for Cancer Research.
SIGNAL TRANSDUCTION

915 Distinct Afatinib Resistance Mechanisms Identified in Lung Adenocarcinoma Harboring an EGFR Mutation
Toshimitsu Yamaoka, Tohru Ohmori, Motoi Ohba, Satoru Arata, Yasunori Murata, Sojiro Kusumoto, Koichi Ando, Hiroyo Ishida, Tsukasa Ohnishi, and Yasutsuna Sasaki

929 Insulin Receptor and GPCR Crosstalk Stimulates YAP via PI3K and PKD in Pancreatic Cancer Cells
Fang Hao, Qinhong Xu, Yinglan Zhao, Jan V. Stevens, Steven H. Young, James Sinnett-Smith, and Enrique Rozengurt

942 Calcium Sensor, NCS-1, Promotes Tumor Aggressiveness and Predicts Patient Survival
Lauren M. Moore, Allison England, Barbara E. Ehrlich, and David L. Rimm

953 The Microtubule Network and Cell Death Are Regulated by an miR-34a/Stathmin 1/III-Tubulin Axis
Nancy S. Vetter, E.A. Kolb, Christopher C. Mills, and Valerie B. Sampson

ABOUT THE COVER

Carcinomas develop in a complex tumor microenvironment (TME) that includes a diverse spectrum of cell types that influence tumor cell behavior. Notably, in response to genotoxic cancer-directed therapeutics, proliferating tumor cells undergo a complex but coordinated response leading to repair, senescence, or apoptosis. In contrast to tumor cells, the vast majority of benign cells in the TME, including fibroblasts and vascular endothelium, are quiescent, and initiate a damage response program that includes the secretion of cytokines and growth factors capable of promoting the resistance of surviving tumor cells to further cycles of treatment. The cover image shows the expression of genes involved in cell cycle progression (CCP) in microdissected cell populations from prostate cancers that comprise benign prostate epithelial cells, cancer adjacent stroma, and carcinoma. In comparison to prostate cancer, benign epithelium and cells in the prostate stroma exhibit very low CCP activity, indicating they are in a Go, quiescent, terminally differentiated state. Please see the article by Gomez-Sarosi and colleagues (beginning on page 842) for more information.