Highlights of This Issue 1635

REVIEW 1637

The MiTF/TFE Family of Transcription Factors: Master Regulators of Organelle Signaling, Metabolism, and Stress Adaptation
Logan Slade and Thomas Pulinilkunnal

CELL CYCLE AND SENESCENCE 1644

Sympathetic Signaling Reactivates Quiescent Disseminated Prostate Cancer Cells in the Bone Marrow
Ann M. Decker, Younghun Jung, Frank C. Cackowski, Kenji Yumoto, Jingchen Wang, and Russel S. Taichman

CELL DEATH AND SURVIVAL 1656

Apoptotic Bodies Elicit Gas6-Mediated Migration of AXL-Expressing Tumor Cells

Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti–CD44-Based NIR-PIT
Tadanobu Nagaya, Yuko Nakamura, Shuhei Okuyama, Fusa Ogata, Yasuhiro Maruoka, Peter L. Choyke, Clint Allen, and Hisataka Kobayashi

CHROMATIN, EPIGENETICS, AND RNA REGULATION 1678

FOXD3 Regulates CSC Marker, DCLK1-S, and Invasive Potential: Prognostic Implications in Colon Cancer
Shubhashish Sarkar, Malaney R. O’Connell, Yoshinaga Okugawa, Brian S. Lee, Yuji Toiyama, Masato Kusunoki, Robert D. Daboval, Ajay Goel, and Pomila Singh

METABOLISM 1692

B-cell Receptor Signaling Regulates Metabolism in Chronic Lymphocytic Leukemia
Hima V. Vangapandu, Ondrej Havranek, Mary L. Ayres, Benny Abraham Kaipparettu, Kumudha Balakrishnan, William G. Wiarda, Michael J. Keating, R. Eric Davis, Christine M. Stellrecht, and Varsha Gandhi

1704 Adipocytes Sequester and Metabolize the Chemotherapeutic Daunorubicin
Xia Sheng, Jean-Hugues Parmentier, Jonathan Tucci, Hua Pei, Omar Cortez-Toledo, Christina M. Dieli-Conwright, Matthew J. Oberley, Michael Neely, Etan Orgel, Stan G. Louie, and Steven D. Mittelman

1714 NAD Synthesis Pathway Interference Is a Viable Therapeutic Strategy for Chondrosarcoma
Elisabeth F.P. Petene, Brendy E.W.M. van den Akker, Bertine Niessen, Jan Oosting, Johnny Suijk, Yvonne de Jong, Erik H.J. Danen, Anne-Marie Cleton-Jansen, and Judith V.M.G. Bovée

GENOMICS 1722

Genomic Analysis of Nasopharyngeal Carcinoma Reveals TME-Based Subtypes
Li Zhang, Kenzie D. MacIsaac, Ting Zhou, Pei-Yu Huang, Chunlin Xin, Jason R. Dobson, Kun Yu, Derek Y. Chiang, Yue Fan, Marc Pelletier, Yan Wang, Savina Jaeger, Viveksagar Krishnamurthy Radhakrishnan, Lellean JeBailey, Peter Skewes-Cox, Jing Zhang, Wenfeng Yang, Yan Huang, Hongyun Zhao, Yuanjuan Zhao, En Li, Bin Peng, Alan Huang, Glenn Dranoff, Peter S. Hammeneaman, Jeffrey Engelman, Hans Bitter, Yi-Xin Zeng, and Yao Yao

ONCOGENES AND TUMOR SUPPRESSORS 1733

The Influential Role of BCL2 Family Members in Synovial Sarcomagenesis

1741 Alternative Polyadenylation of PRELID1 Regulates Mitochondrial ROS Signaling and Cancer Outcomes
Austin E. Gillen, Heather M. Brechbuhl, Tomomi M. Yamamoto, Enos Kline, Manoj M. Pillai, Jay R. Hesselberth, and Peter Kabos

1752 YAP Expression and Activity Are Suppressed by S100A7 via p65/NFκB-mediated Repression of ΔNp63
Yunguang Li, Fei Kong, Qirui Shao, Rui Wang, Enze Hu, Jin Liu, Chang Jin, Dacheng He, and Xueyuan Xiao
1764 A First-in-Class TWIST1 Inhibitor with Activity in Oncogene-Driven Lung Cancer

SIGNAL TRANSDUCTION

1777 A Novel Notch–YAP Circuit Drives Stemness and Tumorigenesis in Embryonal Rhabdomyosarcoma
Katherine K. Slemmons, Lisa E.S. Crose, Stefan Riedel, Manuela Sushnitha, Brian Belyea, and Corinne M. Linardic

CORRECTION

1803 Correction: A Transcriptional Program for Detecting TGFβ-Induced EMT in Cancer

1804 Acknowledgment to Reviewers

ABOUT THE COVER
In this issue, Sheng and colleagues (beginning on page 1704) demonstrate that adipocytes rapidly absorb daunorubicin and other anthracyclines. Daunorubicin, which is naturally fluorescent, as shown in the cover image, accumulates in 3T3-L1 adipocytes after 4 hours in culture at 60 nM initial concentration (image obtained by G.E. Fernandez in the CHLA Cellular Imaging Core). In addition, adipocytes express high levels of aldo-keto reductase and carbonyl reductase enzymes, which metabolize daunorubicin to the largely inactive form, daunorubicinol. Together, this sequestration and inactivation reduces active anthracycline concentrations in the microenvironment and may impair treatment outcome of childhood leukemia and other cancers that reside near adipocytes. These findings may help explain why obese patients with certain cancers have a poorer treatment outcome.