Highlights of This Issue

REVIEW

315 Understanding TERT Promoter Mutations: A Common Path to Immortality
Robert J.A. Bell, H. Tomas Rube, Ana Xavier-Magalhães, Bruno M. Costa, Andrew Mancini, Jun S. Song, and Joseph F. Costello

324 BET Bromodomain Inhibitors Enhance Efficacy and Disrupt Resistance to AR Antagonists in the Treatment of Prostate Cancer

DNA DAMAGE AND REPAIR

363 miR-155 Overexpression Promotes Genomic Instability by Reducing High-fidelity Polymerase Delta Expression and Activating Error-Prone DSB Repair
Jennifer R. Czochor, Parker Sulkowski, and Peter M. Glazer

GENOMICS

374 Cells Comprising the Prostate Cancer Microenvironment Lack Recurrent Clonal Somatic Genomic Aberrations
Daniella Bianchi-Frias, Ryan Basom, Jeffrey J. Delrow, Ibisa M. Coleman, Olga Dalkova, Xiaoyu Qu, Min Fang, Omar E. Franco, Nolan G. Ericson, Jason H. Bielas, Simon W. Hayward, Lawrence True, Colm Morrissey, Lisha Brown, Neil A. Bhowmick, David Rowley, Michael Ittmann, and Peter S. Nelson

ONCOGENES AND TUMOR SUPPRESSORS

385 KLF4 Suppresses Tumor Formation in Genetic and Pharmacological Mouse Models of Colonic Tumorigenesis
Amr M. Ghaleb, Enas A. Elkarim, Agnieszka B. Bialkowska, and Vincent W. Yang

SIGNAL TRANSDUCTION

397 SGK Kinase Activity in Multiple Myeloma Cells Protects against ER Stress Apoptosis via a SEK-Dependent Mechanism
Bao Hoang, Yijiang Shi, Patrick I. Frost, Veena Mysore, Carolynne Bardeleben, and Alan Lichtenstein

CELL CYCLE AND SENESCENCE

332 Integrative Genomic Analyses Yield Cell-Cycle Regulatory Programs with Prognostic Value
Chao Cheng, Shaoke Lou, Erik H. Andrews, Matthew H. Ung, and Frederick S. Varn

CELL DEATH AND SURVIVAL

344 The Role of CD44 in Glucose Metabolism in Prostatic Small Cell Neuroendocrine Carcinoma
Wei Li, Alexa Cohen, Yin Sun, Jill Squires, Daniel Braas, Thomas G. Graeber, Lin Du, Gang Li, Zhen Li, Xiang Xu, Xufeng Chen, and Jiaoti Huang

CHROMATIN, EPIGENETICS, AND RNA REGULATION

354 miR-137 Regulates the Tumorigenicity of Colon Cancer Stem Cells through the Inhibition of DCLK1
Masazumi Sakaguchi, Shigeo Hisamori, Nobu Oshima, Fumiaki Sato, Yohei Shimono, and Yoshihara Sakai
ABOUT THE COVER

The ability of cancer stem cells (CSCs) to develop cancer makes them a viable therapeutic target. However, the mechanisms that regulate CSCs are not well defined. Here, evidence suggests the miR-137/DCLK1 axis as an important regulator in colon CSCs. The cover image is a representative green fluorescent image of a xenograft tumor derived from SW480 cells transduced with miR-137-GFP and DCLK1-mCherry (not shown, see complete figure). For details, see the article by Sakaguchi and colleagues (page 354).