Table of Contents

Highlights of This Issue 125

REVIEW

127 **Control of Proliferation and Cancer Growth by the Hippo Signaling Pathway**
Ursula Ehmer and Julien Sage

CELL CYCLE AND SENESCENCE

141 **Active FOXO1 Is a Key Determinant of Isoform-Specific Progesterone Receptor Transactivation and Senescence Programming**
Caroline H. Diep, Todd P. Knutson, and Carol A. Lange

CHROMATIN, EPIGENETICS, AND RNA REGULATION

163 **Integrative Analysis Reveals the Transcriptional Collaboration between EZH2 and E2F1 in the Regulation of Cancer-Related Gene Expression**
Han Xu, Kexin Xu, Housheng H. He, Chongzhi Zang, Chen-Hao Chen, Yiwen Chen, Qian Qin, Su Wang, Chenfei Wang, Shenghen Hu, Fugen Li, Henry Long, Myles Brown, and X. Shirley Liu

DNA DAMAGE AND REPAIR

173 **Linking Cancer Metabolism to DNA Repair and Accelerated Senescence**
Elena V. Efimova, Satoe Takahashi, Noumaan A. Shamsi, Ding Wu, Edwardine Labay, Olesya A. Ulanovskaya, Ralph R. Weichselbaum, Sergey A. Kozmin, and Stephen J. Kron

185 **Defining ATM-Independent Functions of the Mre11 Complex with a Novel Mouse Model**
Alessia Balestrini, Laura Nicolas, Katherine Yang-lott, Olga A. Guryanova, Ross L. Levine, Craig H. Bassing, Jayanta Chaudhuri, and John H.J. Petrini

GENOMICS

196 **Hypermutation of DPYD Deregulates Pyrimidine Metabolism and Promotes Malignant Progression**
Lauren Edwards, Rohit Gupta, and Fabian Volker Filipp

ONCOGENES AND TUMOR SUPPRESSORS

207 **Identification of an "Exceptional Responder" Cell Line to MEK1 Inhibition: Clinical Implications for MEK-Targeted Therapy**
Hugh S. Gannon, Nathan Kaplan, Aviad Tsherniak, Francisca Vazquez, Barbara A. Weir, William C. Hahn, and Matthew Meyerson

216 **Differential Regulation of ZEB1 and EMT by MAPK-Interacting Protein Kinases (MNK) and eIF4E in Pancreatic Cancer**
Krishan Kumar, Christina R. Chow, Kazumi Ebine, Ahmet D. Arslan, Benjamin Kwok, David J. Bentrem, Frank D. Eckerdt, Leonidas C. Platanias, and Hidayatullah G. Munshi

SIGNAL TRANSDUCTION

228 **miR-138–Mediated Regulation of KINDLIN-2 Expression Modulates Sensitivity to Chemotherapeutics**
Khalid Sossey-Alaoui and Edward F. Plow
ABOUT THE COVER

In this issue, a study by Efimova and colleagues (see page 173) re-examines two nearly universal properties of cancer cells, metabolic reprogramming and cellular immortality, and describes how cancer cells may alter their metabolism to resist senescence. While the Warburg effect may provide cancer cells with biosynthetic intermediates to support rapid growth, the recent discovery of oncometabolites and their epigenetic effects suggests a more direct role in carcinogenesis. Efimova and colleagues extend the paradigm by showing that targeting metabolism overcomes the resistance of cancer cells to DNA damage, resulting in terminal senescent arrest. The cover image shows MCF-7 cells treated with the glucose uptake inhibitor 2-deoxyglucose prior to an otherwise tolerated dose of radiation, but which here induces senescence, as shown by the large, flat cells stained blue with X-Gal for senescence-associated beta-galactosidase. Treating cells with oncometabolites promotes DNA damage repair. Their work implicates metabolic reprogramming in maintaining immortality and provides a rationale for combining metabolic targeting with genotoxic therapy.
Molecular Cancer Research

14 (2)

Mol Cancer Res 2016;14:125-238.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://mcr.aacrjournals.org/content/14/2</th>
</tr>
</thead>
</table>

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, use this link http://mcr.aacrjournals.org/content/14/2. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.