Highlights of This Issue 893

EDITORIAL

895 There and Back Again: The Middle Earth of DNA Repair
Karen E. Knudsen

REVIEW

898 Cell-free DNA (cfDNA): Clinical Significance and Utility in Cancer Shaped By Emerging Technologies
Stanislav Volik, Miguel Alcaide, Ryan D. Morin, and Colin Collins

CELL DEATH AND SURVIVAL

909 Bone Marrow Microenvironment Niche Regulates miR-221/222 in Acute Lymphoblastic Leukemia
Blake S. Moses, Rebecca Evans, William L. Slone, Debbie Pikel, Ivan Martinez, Michael D. Craig, and Laura F. Gibson

DNA DAMAGE AND REPAIR

920 Amplification of TLK2 Induces Genomic Instability via Impairing the G2-M Checkpoint
Jin-Ah Kim, Meenakshi Anurag, Jamunaranji Verarraghavan, Rachel Schiff, Kaiyi Li, and Xiao-Song Wang

928 Augmented HR Repair Mediates Acquired Temozolomide Resistance in Glioblastoma
Carlos Rodrigo Gil del Alcazar, Pavlina Krasimirova Todorova, Amyn A. Habib, Bipasha Mukherjee, and Sandeep Burma

GENOMICS

941 Genomic Integration of High-Risk HPV Alters Gene Expression in Oropharyngeal Squamous Cell Carcinoma

METABOLISM

953 High-Fat Diet-Induced Complement Activation Mediates Intestinal Inflammation and Neoplasia, Independent of Obesity
Stephanie K. Doerner, Edimara S. Reis, Elaine S. Leung, Justine S. Ko, Jason D. Heaney, Nathan A. Berger, John D. Lambris, and Joseph H. Nadeau

ONCOGENES AND TUMOR SUPPRESSORS

966 Mitochondrial β-Carotene 9’,10’ Oxygenase Modulates Prostate Cancer Growth via NF-xB Inhibition: A Lycopene-Independent Function
Xiaoming Gong, Raja Marisiddahal, Susan Zaripheh, Doris Wiener, and Lewis P. Rubin

976 Rapid Conversion of Mutant IDH1 from Driver to Passenger in a Model of Human Gliomagenesis
Tor-Christian Aase Johannessen, Joydeep Mukherjee, Pavithra Vswanath, Shigeo Ohba, Sabrina M. Ronen, Rolf Bjerkvig, and Russell O. Pieper

SIGNAL TRANSDUCTION

984 MNK Inhibition Disrupts Mesenchymal Glioma Stem Cells and Prolongs Survival in a Mouse Model of Glioblastoma
Jonathan B. Bell, Frank D. Eckerdt, Kristen Alley, Lisa P. Magnusson, Hridi Hussain, Yingtao Bi, Ahmet Dirim Arslan, Jessica Clymer, Angel A. Alvarez, Stewart Goldman, Shi-Yuan Cheng, Ichiro Nakano, Craig Horbinski, Ramana V. Davuluri, C. David James, and Leonidas C. Platanias
Glioblastomas treated with the DNA alkylating agent temozolomide develop temozolomide-resistance driven by augmented homologous recombination. The cover image shows chromosomes from a temozolomide-resistant tumor. Tumor cells were cultured in BrdU, and treated with a DNA-damaging drug. Metaphase spreads were prepared from the treated cells, and chromosomes were stained with acridine orange (green). The chromosomes exhibit high numbers of sister chromatid exchanges which indicates high levels of homologous recombination repair of drug-induced DNA double-strand breaks. For more information, see the article by Gil del Alcazar and colleagues beginning on page 928.