Highlights of This Issue 1263

REVIEW

1265 The Key Role of Calmodulin in KRAS-Driven Adenocarcinomas
Ruth Nussinov, Serena Muratcioglu, Chung-Jung Tsai, Hyunbum Jang, Attila Gursoy, and Ozlem Keskin

CELL DEATH AND SURVIVAL

1274 VEGFR-1 Pseudogene Expression and Regulatory Function in Human Colorectal Cancer Cells
Xiangcang Ye, Fan Fan, Rajat Bhattacharya, Seth Bellister, Delphine R. Boulbes, Rui Wang, Ling Xia, Cristina Ivan, Xiaofeng Zheng, George A. Calin, Jing Wang, Xiongbin Lu, and Lee M. Ellis

1283 Ca\(^{2+}\)-Activated IK K\(^{\text{\textbf{+}}}\) Channel Blockade Radiosensitizes Glioblastoma Cells
Benjamin Stegen, Lena Butz, Lukas Klumpp, Daniel Zips, Klaus Dittmann, Peter Ruth, and Stephan M. Huber

DNA DAMAGE AND REPAIR

1296 Suppression of Reserve MCM Complexes Chemosensitizes to Gemcitabine and 5-Fluorouracil
Victoria L. Bryant, Roy M. Elias, Susan M. McCarthy, Timothy J. Yeatman, and Mark G. Alexandrow

GENOMICS

1306 Patient Mutation Directed shRNA Screen Uncovers Novel Bladder Tumor Growth Suppressors
Jonathan Hensel, Jason E. Dues, Charles Owens, Garrett M. Dancik, Michael G. Edwards, Henry F. Frierson, and Dan Theodorescu

1316 E2F4 Program Is Predictive of Progression and Intravesical Immunotherapy Efficacy in Bladder Cancer
Chao Cheng, Frederick S. Varn, and Carmen J. Mansit

ONCOGENES AND TUMOR SUPPRESSORS

1325 Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations
John C. Hunter, Anuj Manandhar, Martin A. Carrasco, Deepak Gurbani, Sudeshan Gondi, and Kenneth D. Westover

1336 PKC\(\varepsilon\) Is an Essential Mediator of Prostate Cancer Bone Metastasis
Alvaro Gutierrez-Uzquiza, Cynthia Lopez-Haber, Danielle L. Jernigan, Alessandro Fatatis, and Marcelo G. Kazanietz

SIGNAL TRANSDUCTION

1347 miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis
Xiaojuan Sun, Cherie Charbonneau, Lei Wei, Qian Chen, and Richard M. Terek
ABOUT THE COVER

The 1.1 Å x-ray crystal structure of oncogenic KRAS G13D, reported by Hunter and colleagues (p.1325), reveals a destabilizing interaction between the aspartate side-chain and GDP. The calculated electrostatic potential surface map highlights the negative charge (red) introduced by the aspartate, which disrupts the normally positively charged (blue) nucleotide binding pocket and repels adjacent negatively charged phosphates in GDP, explaining the enhanced rate of nucleotide exchange observed for this mutant.