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Figure 1.
TP53mutation status is associated with gene expression in basal-like tumors. A, heat maps showing standardized expression levels (left) and relative fold change
(right) of 124 probes with significant interaction between TP53 status and PAM50 subtype in both METABRIC discovery and validation cohorts. TP53-WT
tumors labeled "WT"; TP53-mutant tumors labeled "mut." Darker red, higher expression; darker blue, lower expression. Probes were plotted in the same order,
sorted by the magnitude of fold change in basal-like tumors (see Supplementary Table S1). B, effect plots of expression of CCR7, CD2, CD3E, LY9, and
perforin (PRF1) grouped by PAM50 subtype and TP53 mutation status. TP53-WT plotted in black; TP53-mutant plotted in blue. Points indicate mean; error bars,
95% CIs calculated from twice the SE. C, using data from Miller et al., effect plots of expression of CCR7, CD2, CD3E, LY9, and perforin (PRF1) grouped by
ER status and TP53 mutation status show significant interaction as in the METABRIC data set. Drawn as in Fig. 1B.
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quantile normalization, and median polish. A cutoff was applied
to the resulting gene lists, restricting them to the top 150 most
likely genes. Genes appearing in multiple lists were randomly
assigned to one list and removed from the others.

Results
Basal-like TP53-WT tumors preferentially expressed cytotoxic
T-cell markers

We analyzed gene expression and TP53 mutation status in
the METABRIC cohort of patients with breast cancer, data
previously reported in refs. 3, 10. The METABRIC cohort con-
sists of separate discovery and validation subsets. We obtained
both TP53 mutation status and gene expression microarray
results for 803 and 617 patients in the discovery and validation
sets, identifying 218 and 176 TP53-mutant tumors, respective-
ly. ER-negative tumors were significantly more likely to harbor
a TP53 mutation than ER-positive tumors (P < 0.001, Fisher
exact test, Table 1). Because TP53 mutation is associated with
worse survival in luminal B, normal-like, and HER2-enriched
tumors but not basal-like tumors (3), we hypothesized that
alterations in TP53 function due to TP53 mutation would have
distinct effects on gene expression in the different intrinsic
subtypes. Such differences might help explain the apparent
absence of association between TP53 mutation and survival
in basal-like tumors.

We therefore constructed a linear model for expression of
each gene that included three terms: TP53 mutation status,
PAM50 subtype, and the interaction between these terms (see
Materials and Methods). We identified 219 probes with signif-
icant interactions in the discovery cohort and 548 probes in the
validation cohort. These lists had 124 probes in common,
comprising 103 genes (listed in Supplementary Table S1). A
larger percentage of the tumors in the validation cohort with
known TP53 mutation status were basal-like (22% in the
validation cohort vs. 12% in the discovery cohort), which may
explain why more significant interactions were identified in this
cohort.

For some probes, residual values were not normally distrib-
uted or had heteroscedastic variance between strata, conditions

which would violate the assumptions of the ANOVA (Materials
and Methods). To test whether our findings were robust to
these issues, we performed a nonparametric permutation analy-
sis of interaction significance for the discovery and validation
sets (see Materials and Methods). Probesets with the strongest
P value for interaction in the parametric ANOVA also had the
most significant P value for interaction as assessed by permu-
tation analysis (Supplementary Fig. S1). We found 358 probes
(314 genes) to be significant at P < 0.001 in both cohorts using
the permutation approach, including all but one of the 103
genes identified by the parametric approach (TESPA1), sup-
porting our finding that interaction between TP53 mutation
status and tumor subtype was statistically significant for these
genes.

The main effect identified in both cohorts by this analysis
was upregulation of immune-related genes in the basal-like
TP53-WT subgroup, as compared with TP53-mutant tumors
(Fig. 1A). Genes with significant interactions between subtype
and TP53mutation status usually had strongly correlated expres-
sion (median Spearman rho ¼ 0.64), and pathway analysis by
Gene Ontology enrichment testing showed that this gene list was
significantly enriched for genes with roles in regulation of T-cell
activation, T-cell receptor signaling, and T-cell costimulation
(corrected P < 2 � 10�12). These included T-cell surface antigens
(e.g., CD2, CD3D, CD4, CD6, LY9), effector molecules for cyto-
toxic T cells (e.g., perforin), genes important to the T-cell antigen
receptor pathway (e.g., CD247 and ZAP70), and CXCR3, a che-
mokine receptor participating in tissue infiltration by T cells
(ref. 37; Fig. 1B).

We next confirmed the association between elevated ex-
pression of T-cell markers and TP53 mutation status in ER-
negative tumors in an independent, previously published cohort
of 247 breast tumors (38). This cohort was smaller than
METABRIC, reducing the statistical power to identify inter-
actions. Although the mean difference in T-cell gene expression
levels between ER-negative TP53-WT and TP53-mutant tumors
was also smaller than what we observed in the METABRIC data,
we confirmed significant interaction for 14 of the 103 genes
identified in the METABRIC analysis, including CXCR3, CD2,
CD3E, LY9, and IL2RG (Pinteraction < 4.9 � 10�4, Fig. 1C).

6

8

10

12

6

8

10

12

5

6

7

8

9

5

6

7

8

9

5

6

7

8

9

−2

−1

0

1

2

3

CCR7 CD2 CD3E LY9 Perforin

lo
g 2 

ex
pr

es
si

on
C

T
L 

sc
or

e

A

B

A
bs

en
t

M
ild

S
ev

er
e

A
bs

en
t

M
ild

S
ev

er
e

A
bs

en
t

M
ild

S
ev

er
e

A
bs

en
t

M
ild

S
ev

er
e

A
bs

en
t

M
ild

S
ev

er
e

A
bs

en
t

M
ild

S
ev

er
e

Figure 2.
Severe immune infiltration was
correlated with elevated expression of
CTL surface markers. A, box plots
showing expression of CCR7, CD2,
CD3E, LY9, and PRF1 increases with
increasing severity of pathologically
determined lymphocytic infiltration,
with a qualitatively higher jump
between "mild" and "severe" than
between "absent" and "mild." B, box
plot showing expression of the CTL
pathway generated from Nanodissect
analysis also increases with increasing
severity of pathologically determined
lymphocytic infiltration.
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Cytotoxic T-cell mRNA expression correlated with lymphocytic
infiltration assessed by histopathology

We assessed the degree to which elevated expression of T-cell
genes was associated with the presence of immune cells by
comparing expression of lymphocytic markers with lymphocytic
infiltration scores (graded as absent, mild, or severe; see Materials
and Methods). ER-negative tumors had significantly higher
degrees of infiltration than ER-positive tumors (P < 0.001, c2 test
for trend) with the highest percentage of severe infiltration occur-
ring in basal-like tumors (Table 1). Across all tumor subtypes,
lymphocytic infiltration determined by histopathology was
strongly correlated with expression of CD2, CD3E, CCR7, and
other genes associated with lymphocytes (Fig. 2A).

CTL and TH1 expression scores were higher in ER-negative and
IC10/basal-like TP53-WT tumors than TP53-mutant tumors

For subsequent analysis, we calculated expression scores for
CTL, TH1, and TH2 genes using two complementary approaches.
We first generated CTL, TH1, and TH2 gene lists usingNanodissect,
an in silico method to identify genes with cell-lineage–specific
expression (ref. 36; gene lists in Supplementary Tables S2 and S3).
The correlation between increases in lymphocyte infiltration
assessed by histopathology and increased CTL score was strong
(Fig. 2B). CTL score was correlated positively with TH1 score (r2¼
0.49, P < 0.001) and inversely with TH2 expression score (r2 ¼
0.17, P < 0.001). We identified a significant interaction between
TP53 mutation status and tumor subtype associated with CTL
score using the parametric ANOVA model (P ¼ 3 � 10�17). The
lowest P value in 100,000 random sample permutations using
this model was 4.8 � 10�6, supporting our finding that the
interaction between TP53 mutation status and tumor subtype
was statistically significant for the CTL score. We obtained similar
results using gene lists derived from gene expression microarray
analysis of cell fractions obtained by flow-cytometry separation of
lymphocytes (Supplementary Fig. S2; ref. 35).

We then compared these scores in TP53-WT and TP53-mutant
tumors by pathway differential expression analysis (34). ER-
positive TP53-mutant tumors had slightly lower TH1 scores,
whereas ER-negative TP53 wild-type tumors had significantly
higher CTL scores and lower TH2 scores (Fig. 3A). Within the
intrinsic subtypes, no scorewas significantly different in luminal A
or normal-like tumors, whereas TP53-mutant luminal B tumors
had lower CTL and TH1 scores (Fig. 3B). TP53-mutant HER2-
enriched tumors had slightly lower TH2 scores, whereas TP53-
mutant basal-like tumors had higher CTL scores and lower TH2
scores (Fig. 3B). Within the ICs, IC4 and IC10 had clearly higher
CTL scores compared with other subtypes. IC4, which is enriched
for tumors with heavy lymphocytic infiltration, on the basis of
copy-number analysis (showing the deletions corresponding to T-
cell receptor rearrangement), gene expression, and histological
assessment, had the highest CTL score (Table 2; Supplementary
Fig. S3). But, whereas IC10 tumors (which are basal-like tumors
with genomic instability) that were TP53-WT had higher CTL and
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Figure 3.
Immune infiltrate is enriched for CTL
and TH1 pathways. Plots of estimated
fold-change distributions of
standardized CTL scores derived from
log2-transformed gene expression
measurements comparing TP53-WT
with TP53-mutant tumors separated by
(A) ER status, (B) intrinsic subtype, and
(C) integrated cluster. Significant
differential expression (FDR � 0.05)
plotted in thick solid lines;
nonsignificant plotted with thin dotted
lines. Distribution peaks on the right
side of the zero line indicate higher
expression in TP53-WT tumors. Plots
represent a convolution of signal from
individual probes in the pathway; for
probe lists, see Supplementary Tables
S2 and S3.

Table 2. CTL expression scores

CTL score
(all)

CTL score
(TP53-WT)

CTL score
(TP53-mutant)

ER-positive �0.91 �0.07 0.01
ER-negative 0.31 0.58 0.16
Luminal A �0.19 �0.16 �0.06
Luminal B �0.18 �0.18 �0.02
Normal-like 0.25 0.29 0.27
HER2-enriched 0.16 0.34 0.04
Basal-like 0.42 0.88 0.20
IC1 �0.06 �0.05 0.15
IC2 �0.08 �0.07 0.05
IC3 �0.02 �0.01 0.21
IC4 0.39 0.43 0.35
IC5 0.08 0.18 �0.02
IC6 �0.24 �0.22 �0.17
IC7 �0.22 �0.20 �0.08
IC8 �0.41 �0.36 �0.34
IC9 �0.08 �0.07 0.02
IC10 0.28 0.76 0.15
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TH1 scores and lower TH2 scores, IC4 tumors (which have mostly
flat genomic profiles) had no significant difference in CTL/TH1/
TH2 scores related to TP53 mutation status (Fig. 3C).

Both TP53mutation and loss of heterozygosity correlated with
CTL scores in IC10/basal-like tumors

There is evidence from biochemical analysis in vitro and in vivo
that although many TP53 missense mutations result in loss of
function or exert dominant-negative effects, some result in gain of
function (reviewed in ref. 39). Truncatingmutations in TP53 (e.g.,
premature stop codons), which inactivate the protein, were more
frequent in basal-like and HER2-enriched tumors (3). Neverthe-
less, after adjusting for subtype, we did not identify a significant
correlation between immune scores and TP53 mutation type
(data not shown).

If TP53 loss of heterozygosity (TP53-LOH) could phenocopy
TP53 mutation, we would expect TP53-LOH would also be
associated with lower CTL scores. To test this, we fitted a linear
model for CTL score using TP53-LOH status, TP53-mutation
status, and the interaction between TP53-LOH and TP53-muta-
tion status as terms. TP53-WT tumors with copy-number neutral
LOH were counted as TP53-LOHþ, as these tumors had lower
expression of TP53 mRNA than TP53-WT tumors without LOH
(Supplementary Fig. S4).

In ER-negative, basal-like, and IC10 tumors, both TP53 muta-
tion and TP53-LOH were associated with lower CTL scores when

evaluated as a single factor (P < 0.001) and after adjusting for the
effect of the other factor (P < 0.05; Fig. 4A–C). Neither factor was
significant in ER-positive tumors or normal-like tumors. After
stratifying HER2-enriched tumors by ER status, both TP53 muta-
tion and TP53-LOH were significantly and independently asso-
ciated with CTL score in ER-negative, but not ER-positive, tumors
(P < 0.05; Supplementary Fig. S5). In IC4 tumors, TP53-LOH but
not TP53-mutation status was associated with lower CTL score
(P < 0.05; Fig. 4D). We did not find evidence for a statistical
interaction between these two factors in any subgroup. In cases
where both associations were significant, the decrease in CTL
score associated with TP53-LOH was larger than that associated
with TP53 mutation (Fig 4A–C).

Elevated CTL expression score was associated with better
survival in IC10/basal-like tumors

Several previous reports have found an association between
elevated expression of immune cell genes and/or lymphocytic
infiltration and better survival in basal-like or ER-negative tumors
(refs. 20, 22–26). We divided samples into four quartiles by their
CTL scores and compared survival of patients in the highest
quartile (the highest CTL scores) with those in the other three
quartiles (Materials and Methods). In a univariate survival anal-
ysis, we found a significant association between higher CTL score
and longer disease-specific survival in ER-negative [P¼ 0.001, OR
¼0.61; confidence interval (CI), 0.45–0.82, log-rank test, Fig. 5A],
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Figure 4.
Either TP53 mutation or TP53-LOH is
associated with lower expression of
the CTL pathway. Plots of CTL
pathway expression gene expression
divided by TP53 mutation and LOH
status in (A) ER-negative, (B) basal-
like, (C) IC10, and (D) IC4 tumors,
where þ indicates mutation or LOH is
present. TP53-WT tumors plotted in
black; TP53-mutant tumors plotted in
blue. Tumors without TP53-LOH
plotted as open circles; tumors with
TP53-LOH plotted using triangles.
Horizontal lines, mean expression.

Quigley et al.

Mol Cancer Res; 13(3) March 2015 Molecular Cancer Research498

Research. 
on December 1, 2021. © 2015 American Association for Cancermcr.aacrjournals.org Downloaded from 

Published OnlineFirst October 28, 2014; DOI: 10.1158/1541-7786.MCR-14-0387 

http://mcr.aacrjournals.org/


MCR-14-0387; 17/3/2015; 21:39:40

but not ER-positive, tumors (Fig. 5B).We founda similar result for
basal-like tumors (P¼ 0.005, OR¼ 0.59; CI, 0.41–0.86, log-rank
test, Fig. 5C) but not HER2-enriched tumors (Fig. 5D). The effect
was statistically strongest in IC10 tumors (P ¼ 4 � 10�5, OR ¼
0.35; CI, 0.20–0.60, log-rank test, Fig. 5E) and not significant in
IC4 (Fig. 5F). This effect was significant in ER-negative, basal-like,
and IC10 tumors after correction for the presence of lymph node
metastasis, which was the strongest prognostic feature in METAB-
RIC (P < 0.05, log-rank test). In contrast, TP53 status did not
provide independent prognostic information in any of these
groups in univariate analysis or after adjusting for elevated CTL
expression.

Discussion
This study presents association analysis of two independent

cohorts supporting a link between TP53 status in breast tumors
and CTL expression. The expression-based CTL score, used here
as a surrogate of lymphocytic infiltration, was higher in TP53-
WT versus mutant ER-negative, basal-like, and IC10 breast
tumors. Women with basal-like breast tumors and a high CTL
score had significantly longer survival. This effect was strongest
in the "core" basal-like tumors from IC10. The best-understood
model for TP53-mediated tumor suppression involves its
induction by DNA damage to induce apoptosis or cell-cycle
arrest through transcriptional activation of genes controlling
these processes (40). TP53 function can be impaired by trun-
cating mutations, missense mutations affecting its DNA-bind-

ing motif, somatic loss of one or both copies of a TP53-WT
allele, or indirect effects such as binding of the TP53 protein to
viral proteins or proteins such as MDM2. Our results suggest
that the interaction with TP53 that we observed was attribut-
able to loss of a TP53-WT allele rather than a new TP53-
mutant–specific function.

Direct evidence for a mechanistic link between TP53 and
immunosurveillance will require additional functional studies.
It may be that CTL function is influenced by the TP53 pathway
status of tumor cells that are targeted for apoptosis. The primary
mechanism for CTL-mediated cell death is induction of apo-
ptosis via the caspase cascade, suggesting that abrogating the
TP53 pathway may provide an added benefit to tumor cells in
escaping CTL-mediated apoptosis. Studies from the Chouaib
lab (41) using a TP53-WT melanoma cell line paired with an
autologous CTL line have shown evidence for a direct link
between TP53 and CTL function in killing tumor cells. That
study showed that granzyme B-mediated tumor cell death was
inhibited by knocking down TP53 expression with siRNA or by
treatment with the TP53 inhibitor pifithrin-alpha, and conju-
gation between CTLs and their targets leads to TP53 protein
accumulation (41). These results are compatible with a direct
functional link between TP53-mediated apoptosis and CTL
function, but independent replication in breast cancer cells is
needed to establish whether this model is relevant to basal-like
tumors.

A failure of immunosurveillance to arrest tumor development
("immune escape") canoccur by several routes. Some tumors stop
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Figure 5.
Elevated CTL expression is associated
with better survival in ER-negative
tumors. Kaplan–Meier plots
comparing breast cancer (BC)–
specific survival dividing tumors by
those with the highest quartile of CTL
expression (blue) or lower CTL
expression (black) in (A) ER-negative,
(B) ER-positive, (C) basal-like, (D)
HER2-enriched, (E) IC10, and (F) IC4
tumors. Elevated expression of the
CTL gene signature was associated
with significantly better survival in ER-
negative, basal-like, and IC10 tumors.
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producing antigens recognized as foreign by the adaptive immune
system. Others deactivate the apoptotic pathways triggered by T-
cell response. Our data suggest that CTL-mediated immunosur-
veillance is more effective in ER-negative breast tumors if the
tumor still expresseswild-type TP53, and that tumors losingTP53-
WT alleles gain a selective advantage in part by more successfully
evading the adaptive immune system.
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