Table of Contents

REVIEW

1195 Emerging Functions of SRSF1, Splicing Factor and Oncoprotein, in RNA Metabolism and Cancer
Shipra Das and Adrian R. Krainer

CELL DEATH AND SURVIVAL

1205 Targeting mTORC1–Mediated Metabolic Addiction Overcomes Fludarabine Resistance in Malignant B Cells
Arishya Sharma, Allison J. Janocha, Brian T. Hill, Mitchell R. Smith, Serpil C. Erzurum, and Alexandru Almasan

1216 MTBP Is Overexpressed in Triple-Negative Breast Cancer and Contributes to Its Growth and Survival
Brian C. Grieb, Xi Chen, and Christine M. Eischen

1225 BaxΔ2 Promotes Apoptosis through Caspase-8 Activation in Microsatellite-Unstable Colon Cancer
Honghong Zhang, Yuting Lin, Adriana Mañas, Yu Zhao, Mitchell F. Denning, Li Ma, and Jialing Xiang

CHROMATIN, GENE, AND RNA REGULATION

1233 Hypoxia Regulates Alternative Splicing of HIF and non-HIF Target Genes
Johnny A. Sena, Liyi Wang, Lynn E. Heasley, and Cheng-Jun Hu

DNA DAMAGE AND REPAIR

1244 SIRT2 Interacts with β-Catenin to Inhibit Wnt Signaling Output in Response to Radiation-Induced Stress
Phuongmai Nguyen, Sunmin Lee, Dominique Lorang-Leins, Jane Trepel, and DeeDee K. Smart

DNA DAMAGE AND REPAIR

1254 A Monotonic and Prognostic Genomic Signature from Fibroblasts for Colorectal Cancer Initiation, Progression, and Metastasis
Mireia Berdiel-Acer, Daniel Cuadras, Natalia Guillén Díaz-Maroto, Xavier Sanjuan, Teresa Serrano, Antoni Berenguer, Víctor Moreno, Samuel Gonçalves-Ribeiro, Ramon Salazar, Alberto Villanueva, and David G. Mollevi

1267 STAT3-Activated GM-CSFRα Translocates to the Nucleus and Protects CLL Cells from Apoptosis
Ping Li, David Harris, Zhiming Liu, Uri Rozovski, Alessandra Ferrajoli, Yongtao Wang, Carlos Bueso-Ramos, Inbal Hazan-Halevy, Srdana Grigurevic, William Wierda, Jan Burger, Susan O’Brien, Stefan Faderl, Michael Keating, and Zeev Estrov

ONCOGENES AND TUMOR SUPPRESSORS

1283 Extrinsic Apoptosis Is Impeded by Direct Binding of the APL Fusion Protein NPM-RAR to TRADD
Anuja Chattopadhyay, Brian L. Hood, Thomas P. Conrads, and Robert L. Redner

1292 MIF Antagonist (CPSI-1306) Protects against UVB-Induced Squamous Cell Carcinoma

1303 Dynamic Interactions between Cancer Cells and the Embryonic Microenvironment Regulate Cell Invasion and Reveal EphB6 as a Metastasis Suppressor
Caleb M. Bailey and Paul M. Kulesa

SIGNAL TRANSDUCTION

1314 FOXD3 Modulates Migration through Direct Transcriptional Repression of TWIST1 in Melanoma
Michele B. Weiss, Ethan V. Abel, Neda Dadpey, and Andrew E. Aplin
1324 TIMP-1 via TWIST1 Induces EMT Phenotypes in Human Breast Epithelial Cells
Rosemarie Chirco D’Angelo, Xu-Wen Liu, Abdo J. Najy, Young Suk Jung, Joshua Won, Karl X. Chai, Rafael Fridman, and Hyeong-Beo Choi Kim

1334 ID1 Promotes Breast Cancer Metastasis by S100A9 Regulation
Kiranmai Gumireddy, Anping Li, Andrew V. Kossenkov, Kathy Q. Cai, Qin Liu, Jinchun Yan, Hua Xu, Louise Showe, Lin Zhang, and Qihong Huang

ABOUT THE COVER
This image represents a rose plot comparing migratory behaviors of cancer cells in vitro with that observed in vivo. Human melanoma cells display highly directional migration when grafted into an embryonic microenvironment native to the cancer cell’s embryonic precursor, the neural crest. Grafted melanoma cells recognize and are subject to embryonic neural crest guidance cues and microenvironmental signals. This graph displays a direct comparison of both cell trajectory (directionality) and migratory distance, as captured by in ovo time-lapse microscopy. The size of each bar depicts the number of binned cells for a given angle. The colored segments depict the distance migrated by cells within the bin. For more information, see the article by Bailey and Kulesa on page 1303.
Updated version Access the most recent version of this article at:
http://mcr.aacrjournals.org/content/12/9

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://mcr.aacrjournals.org/content/12/9. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>