














(21–24). This unusual NR4A1-dependent drug-induced
apoptotic pathway does not require the DNA binding
domain of NR4A1 and is blocked by nuclear export inhi-
bitors such as leptomycin B (LMB). Studies in this labora-
tory have investigated the effects of 1,1-bis(30-indolyl)-1-(p-
substituted phenyl)methane (C-DIM) derivatives on
NR4A1-mediated-transactivation andDIM-C-pPhOHwas
identified as an NR4A1 antagonist that inhibited nuclear
NR4A1-mediated responses and mimicked the effects of
NR4A1 knockdown by RNAi (19, 20). DIM-C-pPhOH
and siNR4A1 inhibited pancreatic and lung cancer cell
proliferation, and DIM-C-pPhOH also inhibited tumor
cell growth. Mechanistic studies showed that NR4A1 reg-
ulated expression of prosurvival and growth-promoting
genes through p300–NR4A1–Sp1 complex interactions
with GC-rich gene promoter sequences (e.g., survivin;

ref. 19), and NR4A1 also activated mTOR (20) by inhibit-
ing the function of p53 (25). Knockdown of NR4A1 by
RNAi or inactivation of the receptor by DIM-C-pPhOH
reversed these responses, resulting in inhibition of cell and
tumor growth, induction of apoptosis and inhibition of
mTOR (19, 20). However, microscopic examination of
Panc-1 cells transfected with siNR4A1 or treated with
DIM-C-pPhOH showed that NR4A1 was important for
regulating stress levels because loss of this receptor resulted in
significant loss and fragmentation of endoplasmic reticulum
structure (Fig. 2A), indicative of endoplasmic reticulum
stress.
We initially used a proteomics approach to identify stress-

related gene products that are modulated after silencing
NR4A1 (Fig. 1B and C), and both siNR4A1 and DIM-C-
pPhOH induced several prototypical endoplasmic reticulum

Figure 4. DIM-C-pPhOH, the
NR4A1 inactivator, induces
endoplasmic reticulum stress–
mediated apoptosis by increasing
ROS production in Panc-1 cells. A,
cells were treated with either
dimethyl sulfoxide (DMSO) or DIM-
C-pPhOH for 24 hours. B, cells
were transfected with either Ad-
Null or Ad-NR4A1 for 12 hours, and
treated with DIM-C-pPhOH (25
mmol/L) for another 24 hours.
Whole cell lysates were analyzed
by Western blot analysis (NR4A1
protein levels were induced 4-fold
by Ad-NR4A1). C, cells were
treated with DMSO or DIM-C-
pPhOH for 18 hours, and ROS
production was measured by the
oxidation of nonfluorescent DCFH-
DA to fluorescent DCF using either
flow cytometric analysis (left) or a
fluorescence plate reader (right). D,
cells were treated with DMSO or
DIM-C-pPhOH in the presence or
absence of GSH for 24 hours and
whole cell lysateswere analyzedby
Western blot analysis. b-Actin was
used as a loading control.
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stress–related genes. Analysis of the induced and repressed
proteins by mass spectrometry demonstrated that NR4A1
silencing in Panc-1 cells resulted in induction of the stress
proteins GRP78 and ERp60 and several other classes of
proteins, including the mitochondrial and cytosolic ATP5A
and PGK1 proteins, respectively (Fig. 1D). NR4A1 silencing
or treatment with DIM-C-pPhOH induced several other
endoplasmic reticulum stress–related genes, including ATF4,
XBP-1s, and CHOP, as well as several markers of apoptosis
that are associated with activation of endoplasmic reticulum
stress (refs. 26–28 and Figs. 2B and 4A). Moreover, many of
the same markers of endoplasmic reticulum stress and apo-
ptosis were also induced in L3.6pL pancreatic,MCF-7 breast,
and RKO colon cancer cells transfected with siNR4A1

(Fig. 2C and D), suggesting that NR4A1 serves as an
important regulator (inhibitor) of endoplasmic reticulum
stress in cancer cells.
Based on results of CHOP silencing (Fig. 3A), it was also

evident that this gene product plays a critical role in
siNR4A1 and DIM-C-pPhOH-induced endoplasmic retic-
ulum stress and subsequent induction of cleaved caspases
and PARP. Studies with several anticancer agents have
demonstrated a direct linkage between drug-induced ROS
and ROS-dependent induction of CHOP and downstream
responses, including apoptosis (30–32). For example, the
polyherbal formulation zyflamend induces ROS and endo-
plasmic reticulum stress (including CHOP) in colon
and pancreatic cancer cells (33) and, using HCT116 colon

Figure 5. TXNDC5 is a novel NR4A1-regulated gene involved in endoplasmic reticulum stress–mediated apoptosis. A, heat map of genes, including ROS
metabolism genes regulated by siNR4A1 in Panc-1 cells (left). Each cell in the matrix represents the expression level of a gene feature. Red and green
reflect relatively highand lowexpression levels of genes, respectively, as indicated in thescale bar (a log2-transformedscale). (A, right andB)Panc-1 cellswere
transfected with each indicated siRNA for 48 hours and mRNA levels were determined by real-time PCR, as described in the Materials and Methods.
TATA-binding proteinwas used as an internal control andmRNA levels are presented asmeanswith SDof 3 experiments. �,P < 0.05 and #,P < 0.001 vs. siScr.
C, Panc-1 cells were transfected with each indicated siRNA for 72 hours (left) for Western blot analysis or 60 hours (right) for measurement of ROS. D,
Panc-1 cells were transfected with siScr or siTXNDC5 for 6 hours. At 60 hours after transfection, ROS production was measured by the oxidation of
nonfluorescent DCFH-DA to fluorescent DCFusing a fluorescence plate reader (left). #,P<0.001 vs. siScrwithoutGSH. At 24 hours after transfection, the cells
were treated with GSH for an additional 48 hours and whole cell lysates were analyzed by Western blot analysis (right). b-Actin was used as a loading
control and the 2 lanes for each siRNA represent different experiments.
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cancer cells as a model, it was shown that cotreatment with
antioxidants reverse zyflamend-induced CHOP and apo-
ptosis. The observations are consistent with our data show-
ing that both siNR4A1 and DIM-C-pPhOH induced ROS
in Panc-1 cells (Figs. 3B and 4C) and the antioxidant GSH
significantly inhibited induction of CHOP and other mar-
kers of endoplasmic reticulum stress and apoptosis (Figs. 3D
and 4D). These results suggest that NR4A1 attenuates stress
levels in pancreatic cancer cells by regulating ROS metab-
olism and production. GSH only partially protected against
NR4A1-dependent stress induced by DIM-C-pPhOH
because C-DIM compounds induce stress via direct pertur-
bation of mitochondria (34, 35).
Results of gene array studies showed that only 3 ROS

metabolism genes were suppressed in Panc-1 cells transfected
with siNR4A1 and these include IDH1, GLRX, and
TXNDC5 (Fig. 5A). IDH1 plays a critical role in the citric
acid cycle and the generation of reducing equivalents, and the
relative expression of wild-type andmutant IDH1 have both
functional and prognostic significance in cancer (36, 37).

Glutaredoxin (GLRX) is a thioredoxin that contributes to
the cellular redox status and some GLRX genes are over-
expressed in human lung and breast tumors (38, 39).
TXNDC5 is a member of the thioredoxin family of endo-
plasmic reticulum proteins that contain a disulfide isomer-
ase-like (PDI) domain (40–42). Transfection of Panc-1 cells
with siNR4A1 decreases expression of all 3 genes; however,
GLRX protein levels are low and knockdown of GLRX by
RNAi does not activate endoplasmic reticulum stress or
apoptosis, whereas silencing IDH1 and TXNDC5 induces
endoplasmic reticulum stress and apoptosis (Fig. 6A and B).
Thus, NR4A1 regulation of IDH1 and TXNDC5 serves to
maintain homeostatic levels of ROS in Panc-1 cells, and
silencing of IDH1orTXNDC5byRNAi inducesmarkers of
endoplasmic reticulum stress and apoptosis (Fig. 5C and D)
andmimics the effects of siNR4A1 or treatment of these cells
with DIM-C-pPhOH (Fig. 4A and D). Induction of endo-
plasmic reticulum stress and apoptosis markers were more
pronounced in Panc-1 cells transfected with siTXNDC5
versus siIDH1 (Fig. 5C and D), and results of ChIP assays

Figure 6. Regulation of TXNDC5
transcriptional activity by NR4A1.
A, Panc-1 cells were transfected
with siNR4A1 for 72 hours (left
panel) or treated with DIM-
C-pPhOH for 24 hours (middle and
right), and TXNDC5 protein and
mRNA levels were determined by
Western blot analysis and real-time
PCR, respectively. B (left), a
putative NBRE in the TXNDC5
promoter. B (middle), cells were
cotransfectedwith each siRNA and
pTXVDC5-Luc (�1444/þ25), and
luciferase activity (relative to
b-galactosidase activity) was
determined. B (right), Panc-1 cells
were transfected with pTXVDC5-
Luc (�1444/þ25) for 4 hours and
treated with DIM-C-pPhOH for
another 18 hours. Luciferase
activity (relative to b-galactosidase
activity) was determined, and the
corresponding empty vector was
used as a control. C (left),
ChIP assay. Panc-1 cells were
treated with DIM-C-pPhOH for
6 hours, and the ChIP assay was
performed as described in the
Materials and Methods. C (right),
DNA binding assay. Nuclear
extracts of Panc-1 cells were
tested for NR4A1-DNA binding
activity as described in Materials
and Methods. D, schematic
diagram illustrating induction of
apoptosis by inactivation of
NR4A1.
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and transfection with the TXNDC5 promoter construct
confirmed that TXNDC5 is directly regulated by NR4A1.
The parallel results observed after knockdown of NR4A1 or
TXNDC5 or after treatment with the NR4A1 antagonist
(DIM-C-pPhOH) suggest that regulation of TXNDC5
expression by NR4A1 is an important pro-oncogenic func-
tion of this receptor, which serves to maintain sufficiently
low stress levels that facilitate cancer cell growth and survival.
TXNDC5 expression is upregulated in non–small cell lung

cancer, colorectal adenomas, and tumors of the cervix, uterus,
and stomach (compared with nontumor tissue; refs. 41,
and 43–45), and overexpression ofTXNDC5 in gastric cancer
cells increased proliferation and migration and decrease apo-
ptosis (46). Although data mining of patient-derived pancre-
atic cancer arrays did not detect higher TXNDC5 mRNA
expression in tumor versus nontumor tissue (data not shown),
results of this study demonstrate that TXNDC5 is an impor-
tant NR4A1-regulated gene that significantly contributes to
the pancreatic cancer cell phenotype. Thus, NR4A1 inacti-
vates p53 to activate mTOR signaling (20), regulates expres-
sion of prosurvival genes with GC-rich promoters (e.g.,
survivin and bcl-2; ref. 19), and regulates expression of genes
such as TXNDC5 to maintain low levels of ROS-induced
stress in cancer cells. These NR4A1-regulated genes/pathways
highlight the pro-oncogenic activity of this receptor and the
importance of this gene as a target for DIM-C-pPhOH and

related compounds that are currently being developed as
NR4A1 antagonists for cancer chemotherapy.
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