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Abstract
Bioactive lipids are fundamental mediators of a number of critical biologic processes such as inflammation,

proliferation, and apoptosis. Rhabdomyosarcoma (RMS) is common in adolescence with histologic subtypes that
favor metastasis. However, the factors that influence metastasis are not well appreciated. Here, it is shown that
lysophosphatidylcholine (LPC) and its derivative, lysophosphatidic acid (LPA), strongly enhance motility and
adhesion of human RMS cells. Importantly, these metastatic-associated phenotypes were observed at physiologic
concentrations of these lipids, which naturally occur in biologic fluids.Moreover, the effects of these bioactive lipids
were much stronger as compared with known peptide-based prometastatic factors in RMS, such as stromal-derived
factor-1 or hepatocyte growth factor/scatter factor. Finally, both LPC and LPA levels were increased in several
organs after g-irradiation or chemotherapy, supporting the hypothesis that radio/chemotherapy induces an
unwanted prometastatic environment in these organs.

Implications: LPC and LPA play a previously underappreciated role in dissemination of RMS and suggest that
antimetastatic treatment with specific molecules blocking LPC/LPA activity should be part of standard radio/
chemotherapy arsenal. Mol Cancer Res; 12(11); 1560–73. �2014 AACR.

Introduction
Rhabdomyosarcoma (RMS) is the most common soft-

tissue sarcoma of adolescence and childhood. There are two
major histologic subtypes of this tumor, highly metastatic
alveolar rhabdomyosarcoma (ARMS) and less-metastatic
embryonal rhabdomyosarcoma (ERMS). RMS accounts for
5% of all malignant tumors in patients under 15 years of age
(1, 2) and belongs to the family of so-called "small round
blue tumor cells," which often infiltrate bone marrow and
can resemble hematologic blasts. Thus, RMS cells may
sometimes be misdiagnosed as acute leukemia cells (2).
At the molecular level, ARMS is characterized by the

t(2;13)(q35;q14) translocation in 70%of cases or the variant
t(1;13)(p36;q14) in a smaller percentage of cases (3). These
translocations disrupt the PAX3 and PAX7 genes on chro-
mosome 2 or 1, respectively, and the FKHR gene on

chromosome 13, generating PAX3–FKHR and PAX7–
FKHR fusion genes. These fusion genes encode the fusion
proteins PAX3–FKHR and PAX7–FKHR, which have
enhanced transcriptional activity compared with wild-type
PAX3 and PAX7 and are postulated to play a role in cell
survival and dysregulation of the cell cycle in ARMS (1).
Recently, we also found that imprinting of the different
methylated region at the DLK1-GTL2 locus varies in asso-
ciation with the histologic subtype of RMS: embryonal
rhabdomyosarcoma shows loss of imprinting, whereas alve-
olar tumors have erasure of imprinting at this locus (4). This
difference provides evidence about different cellular origin of
these tumors.
Several groups, including ourselves, identified several

chemoattractants that lead to metastasis of RMS cells to
bone marrow, including the a-chemokine stromal-derived
factor 1 (SDF-1), hepatocyte grow factor/scatter factor
(HGF/SF), and insulin-like growth factor type I and II
(IGFI, IGF2), which are secreted by cells in the bonemarrow
microenvironment and play an important role in infiltration
of bone marrow by RMS cells (5–8). Moreover, a robust
chemotactic response to these factors is also observed in
in vitromigration assays in which both SDF-1 and HGF/SF
are used as chemoattractants at supraphysiologic concentra-
tions (5, 6).
However, because the concentrations of these factors in

biologic fluids and tissues are usually very low (9, 10), we
began a search for other chemoattractants that could induce
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metastasis of RMS cells and identified two bioactive lipids,
sphingosine-1-phosphate (S1P) and ceramide-1-phosphate
(C1P), as factors involved in regulating metastatic behavior
of RMS cells at physiologic concentrations (11). Moreover,
we observed that both S1P and C1P are upregulated in bone
marrow tissues after radio/chemotherapy, which supports
the concept that one of the unwanted effects of radio/
chemotherapy is induction of a prometastatic microenvi-
ronment in normal tissues damaged by treatment (11) and
that factors induced by such treatment may be involved in
metastasis of cancer cells resistant to the treatment (11, 12).
On the basis of this concept, we became interested in two
other bioactive lipids, namely, lysophosphatidylcholine
(LPC) and its derivative generated by enzymatic action of
autotaxin (ATX), lysophosphatidic acid (LPA; refs. 13, 14).
As reported, LPA mediates metastases of several types of
tumors via interactions with high-affinity G protein–cou-
pled receptors (GPCR; ref. 15).
In this article, we present for the first time evidence that

both LPC and LPA enhancemotility and adhesive properties
of RMS cells, and the levels of both bioactive lipids increase
in several organs, including in bone marrow after g-irradi-
ation and vincristine treatment. Thus, we have identified
LPC and LPA as novel prometastatic factors in human RMS
cell lines and demonstrate that, like S1P andC1P, their tissue
levels increase in response to radiotherapy. These observa-
tions not only shed more light on the role of bioactive lipids
in the metastasis of cancer cells but should also prompt the
development of new antimetastatic strategies to supplement
treatment by radio/chemotherapy by targeting the metab-
olism and signaling actions of these bioactive lipids.

Material and Methods
Cell lines
We used several human RMS cell lines (gifts from Dr.

Peter Houghton, World Children's Cancer Center, Colum-
bus, OH and Prof. Fred Barr, University of Pennsylvania,
Philadelphia, PA), including both ARMS (RH18, RH28,
RH30, and RH41) and ERMS (JR, SMS-CTR, RD, and
RH36) cell lines. All cell lines used in these studies were
authenticated by short tandem repeat (STR) analysis.
Obtained STR profile was compared either with STR profile
of original cell lines obtained in Dr. Peter Houghton
Laboratory or with published STR profile of cell lines.
SMS-CTR and RH36 cells were cultured in DMEM con-
taining 10% FBS, 100 U/mL penicillin, and 10 mg/mL
streptomycin. All other cell lines were maintained in RPMI
medium 1640, containing 10% FBS, 100 U/mL penicillin,
and 10 mg/mL streptomycin. Stromal cells were maintained
in DMEM containing 20% FBS, 100 U/mL penicillin, and
10 mg/mL streptomycin. All cells were cultured in a humid-
ified atmosphere of 5% CO2 at 37�C, and the media were
changed every 48 hours.

Murine bone marrow stromal cells
Bone marrow–derived stromal cells were expanded ex vivo

frommurine bonemarrowmononuclear cells (BMMNC) as

described (16). Briefly, BMMNCs were expanded in
DMEM supplemented with 20% FBS and 50 U/mL pen-
icillin/streptomycin for 7 to 10 days at 37�C in a 5%-CO2
incubator.

Real-time quantitative reverse-transcription PCR
Total RNA was isolated from RMS cells with the RNeasy

Kit (Qiagen). Human muscle RNA was obtained from
Ambion. The RNAwas reverse transcribedwithMultiScribe
reverse transcriptase, oligo(dT), and random-hexamer prim-
er mix (Applied Biosystems). PCR was performed at 2 cycles
of 2 minutes at 95�C, 1 minute at 60�C, and 1 minute at
72�C; 36 cycles of 30 seconds at 95�C, 1 minute at 60�C,
and 1 minute at 72�C; and 1 cycle of 10 minutes at 72�C.
Quantitative assessment of mRNA levels was done by real-
time RT-PCR on an ABI 7500 instrument with Power
SYBRGreen PCRMasterMix reagent. Real-time conditions
were as follows: 95�C (15 seconds), 40 cycles at 95�C (15
seconds), and 60�C (1 minute). According to melting point
analysis, only one PCR product was amplified under these
conditions. The relative quantity of a target, normalized to
the endogenous b2-microglobulin gene as control and
relative to a calibrator, is expressed as 2�DDCt (fold differ-
ence), where Ct is the threshold cycle, DCt ¼ (Ct of target
genes) � (Ct of the endogenous control gene, b2-micro-
globulin), and DDCt ¼ (DCt of samples for target gene) �
(DCt of calibrator for the target gene). All primers that were
used for RT-PCR or qRT-PCR are listed in Supplementary
Table S1.

Cell proliferation
Cells were plated in culture flasks at an initial density of

1.25 � 104 cells/cm2. After 24 hours, the medium was
changed to newmedium supplemented with 0.5%BSA, and
cells were cultured in the presence or absence of LPA (0.1 or
1 mmol/L) or LPC (200, 20, or 2 mmol/L) with or without
vincristine (0.5 or 5 mmol/L). Full medium (with 10% FBS)
was treated as a positive control. The cell number was
calculated at 24, 48, and 72 hours after the change of
medium. At the indicated time points, cells were harvested
from the culture plates by trypsinization and counted using
Trypan Blue and a Neubauer chamber.

Apoptosis analysis
Cells were cultured under the same conditions as in the

proliferation assay. After 72 hours from the start of LPA and
vincristine administration, cells were trypsinized, centri-
fuged, and stained with Annexin V antibody and propidium
iodide according to the manufacturer's protocol (Annexin V
Apoptosis Detection kit; BD Biosciences). Analysis of
stained cells was performedwith a BDLSR II flow cytometer
(BD Biosciences).

Chemotaxis assay
Chemotaxis assays were performed in amodified Boyden's

chamber with 8-mm pore polycarbonate membrane inserts
(Costar Transwell; Corning Costar) as described previously
(17). In brief, cells detached with 0.05% trypsin were seeded
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into the upper chamber of an insert at a density of 3.5� 104

in 110 mL. The lower chamber was filled with prewarmed
culture medium containing test reagents. Medium supple-
mented with 0.5% BSA was used as a negative control. In
some experiments, cells were pretreated with inhibitors
U0126 (1 mmol/L; Promega), MK2206 (1 mmol/L; Sell-
eckchem), or Ki16425 (10 mmol/L, Cayman Chemicals) for
15 minutes at 37�C. Inhibitors were also added to the lower
chambers and were present throughout the experiment. The
ATX inhibitor S32826 was obtained from Sigma-Aldrich.
After 24 hours, the inserts were removed from the Transwell
supports. The cells that had not migrated were scraped off
with cotton wool from the upper membrane, and the cells
that had transmigrated to the lower side of the membrane
were fixed and stained with HEMA 3 (protocol, Fisher
Scientific) and counted on the lower side of the membrane
using an inverted microscope.

Phosphorylation of intracellular pathway proteins
RMS cell lines were kept overnight in RPMI medium

containing low levels of BSA (0.5%) to render the cells
quiescent. After the cells were stimulated with LPA (0.1
mmol/L) or LPC (20 mmol/L) at 37�C for 5 minutes or 2
hours, respectively, cells were lysed for 20 minutes on ice in
RIPA lysis buffer containing protease and phosphatase
inhibitors (Santa Cruz Biotechnology). The extracted pro-
teins were separated on a 12% SDS-PAGE gel and trans-
ferred to a PVDF membrane. The phosphorylation of the
serine/threonine kinase AKT (phospho-AKT473) and p44/
42 mitogen-activated kinase (phospho-p44/42 MAPK) was
detected by phospho-specific p44/42 MAPK mouse and
rabbit polyclonal antibodies (Cell Signaling) with horserad-
ish peroxidase–conjugated goat anti-mouse and anti-rabbit
secondary antibodies (Santa Cruz Biotechnology). Equal
loading in the lanes was evaluated by stripping the blots
and reprobing with anti-p42/44 MAPK monoclonal anti-
body (clone no. 9102; Cell Signaling) and anti-AKT poly-
clonal antibody (Cell Signaling). The membranes were
developed with an enhanced chemiluminescence reagent
(Amersham Life Sciences), dried, and subsequently exposed
to film (Hyperfilm; Amersham Life Sciences).

Rho activation assay
Rho activation assay was performed using the Rho Acti-

vation Assay Kit according to the manufacturer instruction
(Millipore). Cells were made quiescent, and activation of
Rho by LPA and LPC treatment has been performed as
described above in the "Phosphorylation of intracellular
pathway proteins" section.

Adhesion assay to fibronectin
Cells were made quiescent for 3 hours with 0.5% BSA in

RPMI 1640 before incubation with LPA (0.1 mmol/L) or LPC
(20 mmol/L) for 10 minutes. Subsequently, cell suspensions
(5� 103/100mL)were added directly to 96-well plates covered
with fibronectin and incubated for 5 minutes at 37�C. The
wells were coated with fibronectin (10 mg/mL) overnight at
4�C and blocked with 0.5% BSA for 2 hours before the

experiment. Following incubation, the plates were vigorously
washed three times to remove nonadherent cells, and the num-
ber of adherent cells was counted using an invertedmicroscope.

Adhesion assay for bone marrow–derived stromal cells
RMS cells were labeled before assay with the fluorescent

dye calceinAMandmade quiescent by incubation for 3 hours
at 37�C in RPMI 1640 medium supplemented with 0.5%
BSA. The cells were then stimulated with LPA (0.1 mmol/L)
or LPC (20 mmol/L) for 10 minutes at 37�C, then added to
plates covered by mouse stromal cells, and incubated for
15 minutes at 37�C. After the nonadherent cells had been
discarded, cells that adhered to the stromal cells were counted
under a fluorescence microscope as described (5).

Preparation of conditioned media
Pathogen-free C57BL/6 mice were purchased from the

NCI (Frederick, MD, USA), allowed to adapt for at least 2
weeks, and used for experiments at age of 7 to 8 weeks.
Animal studies were approved by the Animal Care and Use
Committee of the University of Louisville (Louisville, KY,
USA). Mice (four per group) were irradiated with 250, 500,
1,000, or 1,500 cGy. Twenty-four hours later, bone mar-
row, liver, lungs, and plasma were isolated. Conditioned
medium was obtained by 1-hour incubation of bone mar-
row, liver, or lung cells (mechanically homogenized 30 times
using a syringe) in RPMI at 37�C. After centrifuging, the
supernatant was used for further experiments. In studieswith
the chemotherapeutic agent vincristine, mice were injected
intraperitoneally with 0.9%NaCl with (0.5 mg/kg or 2 mg/
kg) or without vincristine. Twenty-four hours later, organs
were isolated, and conditioned medium from various organs
was prepared as described above.

Transplant of RMS cells into immunodeficient mice
To study the effects of the pharmacologic inhibition of

LPA signaling on the metastasis of RMS in vivo, RH30 cells
were either pretreated with Ki16245 (10 mmol/L) or vehicle
alone for 1 hour. The cells were then washed and injected
intravenously (3� 106 per mouse) into SCID–Beige inbred
mice (five mice per group) that were either untreated
(control) or irradiated with 750 cGy 24 hours earlier.
Marrows, livers, and lungs were removed 48 hours after
injection of these cells, and the presence of RMS cells (i.e.,
murine–human chimerism) was evaluated as the difference
in the level of human a-satellite DNA expression. DNAwas
amplified in the extracts isolated from bone marrow–, liver-,
and lung-derived cells using real-time PCR. Briefly, DNA
was isolated using the QIAamp DNA Mini Kit (Qiagen).
Detection of human satellite andmurine b-actinDNA levels
was conducted using real-time PCR and an ABI Prism 7500
Sequence Detection System. A 25-mL reaction mixture
containing 12.5 mL SYBR Green PCR Master Mix, 300
ng DNA template, 50-ACC ACT CTG TGT CCT TCG
TTC G-30 forward and 50-ACT GCG CTC TCA AAA
GGAGTGT-30 reverse primers fora-satelliteDNA, and 50-
TTC AAT TCC AAC ACT GTC CTG TCT-30 forward
and 50-CTG TGG AGT GAC TAA ATG GAA ACC-30
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Figure 1. Bioactive lipids LPA and
LPC are chemoattractants for RMS
cells. A, concentration-dependent
effect of LPA (left) and LPC (right)
on migration of RH30 and RD cell
lines. B, chemotaxis of different
RMS cell lines across Transwell
membranes in response to LPA
(0.1 mmol/L) or LPC (20 mmol/L).
C, chemotaxis of RH30 cells in
response to S1P (1 mmol/L,
considered to be a physiologic
concentration), C1P (0.5 mmol/L,
considered to be a physiologic
concentration), LPA (0.1 mmol/L,
considered to be a physiologic
concentration), LPC (20 mmol/L),
SDF1, and HGF in physiologic
concentrations (5 ng/mL and
0.3 ng/mL, respectively; marked
as P) or supraphysiologic
concentrations (300 ng/mL or
10 ng/mL, respectively, marked as
S). D and E, chemotaxis and
chemokinesis of RH30 and RD
cells in response to LPA
(0.1 mmol/L) and LPC (20 mmol/L).
F, chemotaxis of RH30 and RD
cells to LPC in the presence of the
ATX inhibitor S32826 (1 mmol/L).
The chemotaxis assays were done
at least twice in duplicate, with
similar results. Results, mean �
SD, with a statistical significance
relative to the control of
�, P < 0.05 and ��, P < 0.01.
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reverse primers for b-actin DNAwas used. The Ct value was
determined as before. The number of human cells present in
the murine organs (the degree of chimerism) was calculated
from the standard curve obtained by mixing different num-
bers of human cells with a constant number of murine cells.

Quantitation of LPA and LPC by tandem mass
spectrometry
Lipids were quantitated by methods reported previously

using high-performance liquid chromatography (HPLC)

electrospray-selected ion-monitoring mode MS/MS assays
performed on an AB Sciex 4000 Q-Trap instrument. In
brief, instrument settings for each analyte were optimized
by direct infusion and tuning. HPLC methods were
identical to or adapted from our prior reports (18, 19).
The instrument was operated in selected ion-monitoring
mode to measure lipid-specific precursors and product ion
pairs for C17-LPA (423.2/152.9) and C19-LPC (538.4/
184.0). In each case, structurally related lipids were
included during the sample extraction to monitor
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Figure 2. LPA and LPC activate
MAPK intracellular pathway
proteins and induce migration of
human RMS cell lines through
GPCRs. A, RT-PCR for LPA and
LPC receptors revealed that RMS
cells express these receptors. The
experiment was repeated twice on
two different batches of cells, with
similar results. B, phosphorylation
of p42/44MAPK andAKT in human
RMS cell lines stimulated for 5
minutes by LPA (0.1 mmol/L) or for
2 hours with LPC (20 mmol/L).
Because both controls (5-minute
stimulation and 2-hour stimulation
in the presence of vehicle only)
were similar, only one is shown.
The experiment was repeated
twice, with similar results, and
representative Western blots are
shown. (Continued on the following
page.)
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recovery. After peak identification and integration, the
lipids of interest and recovery standards were quantitated
by reference to calibration curves generated by adding a
range of concentrations of the lipids of interest to an
appropriate matrix (plasma or tissue lipids). The lipid
standards used for these calibrations were independently
quantitated by phosphorous determination or accurate

mass measurements. Absolute levels of the analytes in the
starting sample were then determined using these calibra-
tions with correction for the recovery standard.

Wound-healing assay
Cells were seeded in a 6-well plate and after they reached

70% to 80% of confluence, wounds were carefully made
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Figure 2. (Continued. ) C, the effect
of UO126 and MK2206 on the
migration of RH30 (left) and RD
(right) cells in response to LPA
(0.1 mmol/L) The experiment was
done twice with similar results.
�, P < 0.05. D, the effect of UO126
and MK2206 on the migration of
RH30 (left) and RD (right) cells in
response to LPC (20 mmol/L). The
experiment was done twice with
similar results. �, P < 0.05.
E, activation of Rho in humanRH30
and RD cell lines stimulated for
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representative Western blots are
shown. F, the effect of the LPAR1
and LPAR3 inhibitor Ki16425
(10mmol/L) onmigration ofRH30or
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(0.1 mmol/L) and S1P (1 mmol/L)
confirms specificity of the inhibitor.
�, P < 0.05.
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across the cell monolayer, so that the surrounding cells
were not disturbed. Cells were washed several times, and
the medium was replaced by fresh one with 0.5% BSA
with or without LPA or LPC. The cultures were moni-
tored at several time points: 0, 24, and 48 hours. Photo-
graphs were taken under the phase contrast microscope,
using a 40� magnification.

Statistical analysis
All results were presented as mean � SD. Statistical

analysis of the data was done using the Student t test for
unpaired samples, with P < 0.05 considered significant.

Results
LPA andLPC strongly induce chemokineticmigration of
RMS cells
First, we studied the effect of LPA and LPC on prolifer-

ation of RMS cells. However, despite reports that LPA
and LPC stimulate proliferation of muscle cells (20–22), a
physiologic (i.e., plasma) concentration of LPA (0.1mmol/L)
had no effect on proliferation or survival of RMS cells
cultured in serum-free conditions (data not shown). More-
over, LPC was toxic to RMS cells at a physiologic (i.e.,
plasma) concentration (200 mmol/L), as was reported for
other cells (23). However in our hands, this toxic effect was
not observed at a lower concentration of LPC (20 mmol/L),
which is below the known toxic threshold concentration of
LPC (�50 mmol/L). At this concentration, neither LPC nor
LPA affected proliferation or survival of RMS cells cultured
in serum-free conditions (data not shown). Nevertheless,
because of toxicity concerns, in further experiments, we used
LPC at a concentration of 20 mmol/L.
The motility of cancer cells plays a crucial role in the

process of tumor metastasis, and we observed that both
LPA and LPC strongly enhanced migration of RMS cells
(Fig. 1). Specifically, Fig. 1A shows that both ARMS
(RH30) and ERMS (RD) cells respond robustly and
optimally to physiologic concentrations of both LPA and
LPC. Furthermore, as demonstrated in Fig. 1B, LPA and
LPC increase the motility of all eight human RMS cell
lines used in our study. Moreover, Fig. 1C compares the
response of the highly metastatic RH30 ARMS cell line to
physiologic levels of LPA, LPC, and two other bioactive
lipids, S1P and C1P, reported in our previous work to be
potent chemotactic factors for RMS (10), as well as two
peptide-based factors, SDF-1 (5, 6) and HGF/SF (6), used
at physiologic and supraphysiologic concentrations. We
found that at physiologic concentrations, both LPA and
LPC, like S1P and C1P (11), increase migration of RMS
cells, and the chemotactic response of RMS cells to a
gradient of all these biologic lipids was much higher than
observed for SDF-1 and HGF/SF at the physiologic
concentrations present in peripheral blood.
To address whether the observed increase in motility of

RMS cells in response to LPA and LPC is a result of a
chemotactic versus a chemokinetic response, we performed a
checkerboard assay in which LPA or LPC were added at the

same time into the upper and the lower Transwell chambers
so that no LPA and LPC gradient was created between both
chambers. Figure 1D and E demonstrate that the migration
of RH30 and RD cells in response to LPA in the upper and
lower chambers was not significantly changed and was
inhibited by approximately 30% when LPC was in both the
upper and lower chambers. This finding indicates that LPA
and LPC, like S1P and C1P (11), are mainly chemokinetic
rather than chemotactic factors for RMS cells. The effect of
LPA and LPC on cell migration was additionally confirmed
by using wound-healing assay (Supplementary Fig. S1).
It is known that LPC may be converted to LPA by ATX,

which was initially described as a tumor cell motility–
stimulating factor (24). ATX has lysophospholipase D
activity and catalyzes production of LPA in extracellular
fluids. Because we observed that some RMS cells express
ATX mRNA (Fig. 2A), we asked whether some of the LPC
effects on RMS cell motility are dependent on conversion
of an LPC to an LPA gradient. To address this question, we
studied the migration of RMS cells in response to LPC in
the presence or absence of the ATX small-molecule inhibitor
S32826 (25). As shown in Fig. 1F, ATX inhibition reduced
LPC-directed migration of RD cells and slightly affected
the response of RH30 cells, which is consistent with the
expression pattern of ATX in these cell lines (Fig. 2A). In
a control experiment, this inhibitor did not affect migration
of RMS cells in response to an LPA gradient (Fig. 1F), as
expected.

Human RMS cells express functional G protein–coupled
LPA and LPC receptors
Next, we used RT-PCR to assess the expression of LPA

and LPC receptors in RMS cells. To address this question,
cDNA was isolated from all eight RMS cells lines, and we
studied the expression of LPA receptor types LPAR1–5
(15) as well as expression of receptors G2A and GPR4 that
have been reported to respond to LPC (26, 27). We found
that all human RMS cell lines investigated in our study
expressed at least two LPA receptors known to be impor-
tant for tumorigenic activity (LPAR1–3), and some of
them also expressed LPAR4 and LPAR5 (Fig. 2A). Most
of the cells evaluated in our study also expressed G2A and
GPR4 receptors. The relative level of expression of these
receptor mRNAs according to qRT-PCR is shown in
Supplementary Fig. S2.
Subsequently, we used p42/44 MAPK and AKT phos-

phorylation studies to demonstrate the functionality of LPA
and LPC receptors on RMS cells (Fig. 2B). Both signaling
pathways were selected because of their well-known role in
migration and adhesion of normal (28, 29) and malignant
cells (30, 31).We observed that all RMS cell lines responded
by phosphorylation of p42/44 MAPK in response to LPA
and LPC, and AKT phosphorylation in response to LPA and
LPC was more selective and occurred only in some of the
ARMS cell lines. Furthermore, as demonstrated in Fig. 2C
and D, although the chemokinetic responsiveness of RH30
(ARMS) and RD cells (ERMS) to LPA and LPC gradients
was inhibited by UO126 (a MAPK inhibitor), inhibition by
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MK2206, a known AKT inhibitor, was ineffective, which
further supports the major involvement of p42/44MAPK in
LPA- and LPC-mediated motility of RMS cells.
Because LPAactivates alsoRhoGTPases, includingRhoA,

we tested whether Rho becomes activated in RH30 and RD
cell lines in response to LPA and LPC stimulation. Figure 2E
shows that Rho becomes activated after LPA stimulation
both in RD and RH30 cells. In contrast, LPC activated Rho
in ATX-positive RD cells only.
To better understand the involvement of particular LPA

receptors in LPA-induced motility of RMS cells, we used
the commercially available specific LPAR1 and LPAR3
inhibitor Ki16425. Figure 2F shows that Ki16425
decreased motility of RH30 and RD cells in the presence
of LPA. At the same time, as expected, Ki16425 did not
inhibit migration of RH30 cells to an S1P gradient, which
confirms that the effect of Ki16425 is LPAR1- and
LPAR3-specific (Fig. 2G). At the same time, LPA receptor
1 and 3 inhibitor (Ki16425) did not affect LPC-mediated
migration of RH30 cells; however, it inhibited slightly
migration of RD cell line. This could be explained by a
fact that RD cells in contrast to RH30 cells express ATX,
and this effect of LPC is most likely mediated by ATX-
dependent conversion of LPC to LPA.

LPA and LPC increase adhesion of RMS cells
Another important feature ofmetastasizing cancer cells are

their adhesive properties at the site of metastasis. Therefore,
we next studied the effect of LPA and LPC on adhesion of
RMS cell lines to fibronectin and to bone marrow–derived
stromal cells. We found that both bioactive lipids strongly
induced adhesion of RMS cells to fibronectin (Fig. 3A) and
bone marrow–derived stroma (Fig. 3B).

The presence of LPA increases chemoresistance of cells to
vincristine
To assess the role of LPA and LPC in the potential

resistance of RMS cells to chemotherapy, we performed
proliferation assays of RMS cells in protein-free medium
supplemented with these bioactive lipids and different doses
of vincristine. As demonstrated in Fig. 4A, we observed an
increase in survival of RH30 cells in the presence of low
concentrations of vincristine (�IC50; ref. 32), and this effect
was LPA concentration-dependent. A similar effect was also
observed for higher concentrations of vincristine (Fig. 4B);
however, the survival ratio of cells was much lower. In
contrast, we did not observe a positive effect on the survival
ratio of RH30 cells exposed to vincristine in the presence of
LPC (data not shown). Furthermore, FACS analysis of
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Annexin V and propidium iodide staining of RH30 cells
indicated that LPA might decrease the ratio of cells entering
apoptosis (Fig. 4C), which further supports its effect on
mediating the resistance of RMS cells to vincristine.

Irradiation and chemotherapy increase LPA and LPC
levels in bone marrow
We have proposed that one of the unwanted side effects of

radio/chemotherapy is induction of a prometastatic envi-
ronment in different tissues (11, 12). To see whether radio/
chemotherapy could increase LPA and LPC levels in organs
affected by systemic treatment, LPA and LPC levels were
measured in supernatants harvested from murine bone
marrow, liver, lungs, and brain, which are frequent sites of
RMS metastasis before or after exposure to irradiation or
vincristine administration, by using a sensitive mass spec-
trometry–based approach. We observed, however, that
although the concentrations of LPA and LPC in peripheral
blood plasma did not change in either condition (Fig. 5A,
top plots), LPA and LPC levels in bone marrow cell extracts
(Fig. 5A, middle plots) as well as in conditioned medium

from bone marrow cells (Fig. 5A, bottom plots) significantly
increased. This finding supports the presence of a bone
marrow gradient promoting motility of RMS cells toward
the bones.
To address this issue better, we used conditioned medium

harvested from irradiated bone marrow as a source of chemo-
attractants in Transwell migration assays and observed an
increase in motility of RH30 cells (Fig. 5B). To address the
involvement of LPA in this effect, we pretreated cells before
the migration assay by incubation with Kil16425, which is an
LPA receptor inhibitor, and observed a significant decrease
in migration of RH30 cells to conditioned medium from
irradiated bonemarrow (Fig. 5B). The fact that this inhibition
is not complete since the number of migrated cells is still
higher than for control conditioned medium, is explained by
a presence of other chemoattractants present in conditioned
medium from irradiated bone marrow including, as we re-
ported recently another bioactive lipid—S1P (11).
Of note, in addition to bone marrow, we also observed a

small increase in LPA and LPC levels in other analyzed organs
after exposure to radio/chemotherapy (data not shown).
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Pretreatment of cells with Ki16425 decreases LPA-
dependent metastatic spread of RMS cells
Finally, we tested whether exposure of LPA receptors on

RH30 cells to the inhibitor Ki16425 affects the metastatic
spread of RMS cells in vivo to tissues damaged by irradiation
by evaluating the seeding efficiency of these cells to different
organs (bonemarrow, lungs, and liver). To address this issue,
RH30 cells were exposed to Ki16425 and injected into
nonirradiated control and 750-cGy–irradiated SCID/beige
mice (Fig. 5C). We observed that irradiation increases the
seeding efficiency of RH30 cells, especially to bone marrow,
and that this effect was significantly reduced after pretreat-
ment of RH30 cells with Ki16425, which corroborates
the observation that the LPA level is highly elevated in
irradiated bone marrow (Fig. 5B). Interestingly, we also
observed a significant reduction in bone marrow seeding
efficiency by RH30 cells pretreated with Ki16425, which
suggests that LPA is one of the major factors directing RMS
cells to bone. In control experiments, the toxicity of
K116425 against RMS cells was excluded in cell survival
and proliferation assays (Supplementary Fig. S3A–S3F).
Moreover, on the basis of one-hour exposure of RMS cells
to Ki16425, followed by washed out step and delayed
migration assay, we noticed that this inhibitor significantly
affected responsiveness of RMS cells to LPA for at least 36
hours (Supplementary Fig. S3G).

Discussion
The salient observation of our work is that LPA and LPC

are novel, potent, prometastatic factors for human RMS
cells. We demonstrated the presence of both functional
receptors for these bioactive lipids on RMS cells as well as
their involvement in RMS cell metastasis in a set of in vitro
and in vivo experiments. These observations should prompt
the development of inhibitors of LPA and LPC signaling (or
molecules that bind these bioactive lipids in biologic fluids
and prevent their signaling through binding to the corre-
sponding receptors) that are efficient and safe for in vivo
administration.
It is well known that the recurrence of tumor growth after

successful initial treatment and the fatal tendency of cancer-
ous cells to spread andmetastasize to different vital organs are
major problems affecting the survival of patients with cancer.
The ability to metastasize is one characteristic of highly
malignant and primitive tumors, including RMS (2). The
tropism of cancer cells to metastasize to selected organs
pinpoints the involvement of organ-specific factors that
direct metastasis. These factors may promote the formation
of a premetastatic niche that provides metastasizing tumor
cells with a favorable growth and survival environment (33).
In our previous work, we have demonstrated an important

role for the a-chemokine SDF-1 in the metastasis of RMS
cells to bonemarrow, which is one of the commonmetastatic
sites for RMS cells (2). We and others also reported that the
metastasis of RMS cells is directed by several growth factors,
includingHGF/SF (6), IGFI (7), interferon-inducible T-cell
alpha chemoattractant (I-TAC; ref. 17), and macrophage
migration inhibitory factor (34). Moreover, in addition to

these prometastatic, peptide-based factors, evidence has
accumulated that a family of bioactive lipids plays an
important and underappreciated role in tumor metastasis,
and we recently demonstrated for the first time the involve-
ment of S1P and C1P in the metastasis of RMS cells (11).
Because S1P and C1P are not the only bioactive lipids

involved in cancer metastasis, we became interested in the
role of LPC and LPA,which have both been demonstrated to
be involved in metastasis, including lung, breast, prostate,
ovarian, and pancreatic cancer cells (35–39). Both of these
bioactive lipids are also involved in angiogenesis (40, 41) and
modulate several biologic activities of normal and malignant
hematopoietic cells (42–45). Nevertheless, in contrast to
other reports with other types of cancer cells, in our hands,
LPA and LPC did not promote proliferation of RMS cells.
However, we observed that LPA promoted resistance of
RMS cells to chemotherapy, as seen in an inhibitory effect of
this bioactive lipid on vincristine-induced apoptosis of
RH30 cells, which might explain the unwanted survival of
some RMS cells after chemotherapy. Interestingly, a positive
effect of LPA on chemotherapy resistance was recently
reported also for breast cancer cells treated with taxol (46).
Overall, bioactive lipid signaling is thought to be quali-

tatively different from other classical signaling pathways,
because these molecules cannot circulate freely in solution
but rather exist or bound to predominantly serum albumin
or associated with lipoproteins in plasma (47–49). However,
their level in biologic fluids may also increase locally and
acutely due to their release from damaged cells—as we have
demonstrated in the case of S1P and C1P after radio/
chemotherapy (11). Here, we described a similar phenom-
enon for LPC and LPA. Thus, the overall level of bioactive
lipids in biologic fluids may increase in response to tissue/
organ injury, which suggests a possible contribution of these
molecules to creating a prometastatic environment in
response to radio/chemotherapy (Fig. 5D).
Tumor metastasis is a multistep process, and in the first

step, cells endowed with a higher motility potential detach
from the primary tumormass andmigrate into the peripheral
blood, lymph vessels, or internal body cavities. In this
process, we distinguish two major types of cell motility:
chemotaxis (directed migration to the gradient) and chemo-
kinesis (randommigration of cells in response to a chemoat-
tractant). Although the first type of motility may explain the
tropism of cancer cells to a particular organ that is a source of
specific chemoattractant, the other type of motility reflects
the ability of tumor cells to detach from the primary tumor in
search of a new environment where they can grow and
expand. These processes are tightly connected and together
result in metastatic tumor growth.
In the current work, by using a checkerboard migration

assay and wound-healing assay, we demonstrated for the first
time that LPC and LPA induce random chemokinetic
migration of RMS cells in a similar manner as we reported
for the bioactive phospholipids S1P and C1P. It would be
interesting to see whether this type of motility is also
involved in LPA- and LPC-mediated metastasis of other
types of cancer cells (e.g., lung, breast, or prostate) and
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whether it also regulates migration of normal cells, including
hematopoietic, endothelial, and mesenchymal cells.
One of the most important observations in this current

work is that RMS cells respond to LPA and LPC at con-
centrations normally encountered in peripheral blood and
lymph. Thus, we can envision a scenario in which LPA and
LPC are involved in increasing the overall motility of RMS
cells and promote their egress from the primary tumor,
whereas other factors, such as SDF-1, HGF/SF, or IGFI,
tune and direct their final migration to distant organs/tissues
that secrete high levels of these peptide-based chemoattrac-
tants (5).

As mentioned above, the basic clinical problem is the
recurrence of metastatic tumors after radio/chemotherapy,
due to the presence of therapy-resistant tumor cells that
survive at the primary tumor site or in already established
sites of micro-metastases. On the other hand, as we have
postulated, radio/chemotherapy delivers a toxic insult to the
tissues that may result in induction of a prometastatic
microenvironment. In support of this notion, we have
already shown not only that two important RMS prometa-
static factors, SDF-1 and HGF/SF, are upregulated in bone
marrow after irradiation or exposure to chemotherapy, but
we have also recently demonstrated that the same is true for
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Figure 5. LPA and LPC levels create
a prometastatic microenvironment
in irradiated organs. A, LPC and
LPA levels in plasma, bone marrow
(BM), and conditioned medium
(CM) from bone marrow after
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and LPC in control samples were
as followed: for plasma—6.72 �
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marrow cells—0.01 � 0.00001
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LPC, respectively. B, conditioned
medium from irradiated bone
marrow enhances migration of
RH30 cell lines across Transwell
membranes, and the response of
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of the LPAR1/3 inhibitor Ki16425
(10 mmol/L). Chemotaxis of cells in
response to LPA (0.1 mmol/L)
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only serves as controls. The results
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are shown as mean � SD.
�, P < 0.05(Continued on the
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S1P and C1P. In this current report, we show that radio/
chemotherapy may also induce an increase in LPC and LPA
levels in the bone marrow microenvironment as well as in
other tissues. Thus, the induction of a prometastatic micro-
environment in peripheral tissues may create permissive
conditions for tumor cells that survive treatment to lodge
and expand, and LPA and LPC could play an important role
in this phenomenon. This notion is supported by our
experiments showing an LPA-mediated effect on in vitro
migration and in vivo metastatic spread of RMS cells to
irradiated tissues. Themost visible effect we observed was for
bone marrow, and it is known RMS cells, in particular
ARMS cells, have a significantmetastatic tropism to the bone
marrow microenvironment. These findings support the
conclusion that bioactive lipids are important factors that

may promote homing of hematopoietic stem cells to bone
marrow (42, 50) as well as promote metastasis of cancer cells
to bone. The positive effect of LPA on survival of the RMS
cells exposed to vincristine demonstrated in this work also
explains the potential involvement of this lipid in the
resistance of RMS cells to therapy.
In summary, our data for the first time demonstrate that

LPC and LPA, already present at physiologic concentrations
in peripheral blood or lymph, induce prometastatic behavior
in RMS cells. We also demonstrate that both of these
bioactive lipids become upregulated in tissues exposed to
radio/chemotherapy and thus contribute to a prometastatic
microenvironment in several organs, including bone mar-
row.Moreover, we demonstrate that the spread of RMS cells
can be efficiently inhibited in vivo by blocking LPA
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Figure 5. (Continued. ) . C, detection
of human RMS cells in organs of
mice after irradiation. Before
transplant, RMS cells were
pretreated with Ki16425 or vehicle.
In the experiment, five mice were
used per group. The results are
shown as mean � SD.
�, P < 0.05 and ��, P < 0.01. D,
schematic of the effect of LPA and
LPC together with irradiation/
chemotherapy on themetastasis of
RMS cells from the primary tumor
to bone. LPA and LPC are
upregulated in response to radio/
chemotherapy both in tumor
surrounding and in distant tissues.
As result of this, tumor cells that
survive treatment become more
mobile, egress primary tumor, and
may seed into remote organs
(e.g., bone marrow).
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receptors. On the basis of this finding, LPA- and LPC-
mediated signaling are novel targets for developing more
efficient treatment modalities for RMS and should be
considered as a follow-up step to radio/chemotherapy.
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