Highlights of This Issue 993

REVIEW

Epithelial Plasticity, Cancer Stem Cells, and the Tumor-Supportive Stroma in Bladder Carcinoma
Geertje van der Horst, Lieke Bos, and Gabri van der Pluijm

DNA DAMAGE AND CELLULAR STRESS RESPONSES

Suberoylanilide Hydroxamic Acid as a Radiosensitizer through Modulation of RAD51 Protein and Inhibition of Homology-Directed Repair in Multiple Myeloma
Xufeng Chen, Patty Wong, Eric H. Radany, Jeremy M. Stark, Corentin Lautier, and Jeffrey Y.C. Wong

ANGIOGENESIS, METASTASIS, AND THE CELLULAR MICROENVIRONMENT

FAS1 Domain Protein Inhibits VEGF165-Induced Angiogenesis by Targeting the Interaction between VEGFR-2 and αvβ3 Integrin
Ju-Ock Nam, Hye-Nam Son, Eunsung Jun, Kiweon Cha, Byung-Heon Lee, Rang-Woon Park, and In-San Kim

New Insight into the SDF-1/CXCR4 Axis in a Breast Carcinoma Model: Hypoxia-Induced Endothelial SDF-1 and Tumor Cell CXCR4 Are Required for Tumor Cell Intravasation
Fengyan Jin, Ulf Brockmeier, Friedrich Otterbach, and Eric Metzen

CELL CYCLE, CELL DEATH, AND SENESCENCE

Protein Kinase Casein Kinase 2–Mediated Upregulation of N-Cadherin Confers Anoikis Resistance on Esophageal Carcinoma Cells
Hyeonseok Ko, Seongrak Kim, Cheng-Hao Jin, Eunjung Lee, Sunyoung Ham, Jong In Yook, and Kunhong Kim

CANCER GENES AND GENOMICS

Identification of Genomic Targets of Transcription Factor Aebp1 and its role in Survival of Glioma Cells
Ligand Binding Promotes CDK-Dependent Phosphorylation of ER-Alpha on Hinge Serine 294 but Inhibits Ligand-Independent Phosphorylation of Serine 305

Jason M. Held, David J. Britton, Gary K. Scott, Elbert L. Lee, Birgit Schilling, Michael A. Baldwin, Bradford W. Gibson, and Christopher C. Benz

ABOUT THE COVER

Mouse Mammary Tumor Virus (MMTV) is primarily associated with mammary carcinoma and lymphomas in mice. The signal peptide of MMTV-Env precursor (MMTV-p14) translocates to nucleoli of infected cells and co-localizes with nucleophosmin. Mutations along the sequence of MMTV-p14 ectopically expressed in MCF-7 breast carcinoma cells affect cellular localization of the protein in vitro (mutations within the nuclear localization signal – NLS) and tumorigenicity in vivo (mutations in putative phosphorylation sites). Immunofluorescence of MMTV-p14 with half of the NLS deleted (green) demonstrates partial localization in the nucleus and the cytoplasm. Nucleophosmin (red) remains in the nucleoli. For details, see article by Feldman and colleagues on page 1077.