














c-Met activity, we treated MDA-MB-231-MUC1 cells with
10 ng/mL EGF and a selective c-Met kinase inhibitor,
SU11274, or DMSO vehicle and cells were imaged after
8 days of treatment (Figure 6A). In MDA-MB-231-MUC1
cells treated with EGF, scattering (Fig. 6B, arrowheads), and
branching (Fig. 6B, arrows) were observed as shown in Figs.
4A and 5. Alternatively, the c-Met kinase inhibitor
completely blocked the MUC1 and EGF-induced pheno-
type (Fig. 6C). Importantly, SU11274 does not affect
proliferation in MDA-MB-231-MUC1 or MDA-MB-231
control cells (Supplementary Fig. S2). These results indi-
cated that MUC1 and EGFR-dependent cell scattering is
dependent upon c-Met kinase activity.

Discussion
In the current study, we have identified c-Met as an

important mediator of MUC1-dependent migration, scat-
tering, and branching of breast cancer cells. Microarray
analysis of genes with altered expression in response to PMIP
treatment identified a number of potential metastatic med-
iators, including c-Met. In BT20 breast cancer cells RT-PCR
verified that PMIP downregulates c-Met expression in a
dose-dependent fashion. Further evaluation of c-Met deter-
mined that MUC1 expression resulted in an increase in cell
migration on Type IV collagen, and this increase in migra-
tion can be inhibited by the selective c-Met inhibitor,
SU11274. Furthermore, when placed in Matrigel, cell scat-
tering and branching is increased dramatically upon MUC1
overexpression and EGF treatment, and this phenotype is
also blocked by treatment with the c-Met kinase inhibitor.
Previously, MUC1 was shown to promote cell motility

and invasion through upregulation of MMP13 and

through the induction of epithelial-to-mesenchymal tran-
sition (EMT) in pancreatic cell lines (20, 21). The breast
cancer cells we used in this study, MDA-MB-231 have a
mesenchymal phenotype that is not dependent on
MUC1. The second cell line used, BT20, have an epi-
thelial phenotype, and this was not altered by either
MUC1 downregulation or PMIP treatment (data not
shown). It is possible that the EMT phenotype previously
identified is specific to pancreatic cell lines. In the micro-
array analysis, we did not find that MMP13 transcription
was altered following PMIP treatment (data not shown).
Alternatively, we did find LAMA5 was downregulated by
PMIP treatment (Supplementary Fig. S1), and LAMA5
has been shown to be involved in cell migration (43).
Whether LAMA5 is a direct or indirect target of MUC1
will be the subject of future studies. Overall, we initially
identified 97 genes significantly upregulated/downregu-
lated at the level of the microarray, and further analyzed 6
targets by qRT-PCR. Of these 6, only MET and LAMA5
were confirmed by qRT-PCR in 3 or more replicates (data
not shown).
Our data indicate that MUC1 expression can drive c-

Met–dependent scattering and branching. These data are in
opposition to a previous study in which MUC1 was shown
to interact with and be phosphorylated by Met (34). In that
study, the authors observed that MUC1 expression reduced
MMP1 and decreased cell invasion in pancreatic cells (44).
Whether this is a tissue-type specific response, or whether c-
Met negatively regulates MUC1 is unclear. Of note, all of
our c-Met–dependent migration required EGF, which may
be an important difference between our experiments and
those in the previous study. In the current study, we have
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Figure 5. HGF stimulation drives invasive branching. MDA-MB-231-control (A–D) and MDA-MB-231-MUC1 (E–H) cells were seeded in Matrigel with 10%
serumalone (A andE), 10%serumand 10ng/mLEGF (Band F), 10%serumand 20ng/mLHGF (C andG) or 10%serumandboth 20 ng/mLHGFand10 ng/mL
EGF (D and H). Arrows indicate cell branching. Cells were imaged after 5 days of growth. Scale bar represents 50 mm.
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shown that MUC1 promotes the expression of c-Met,
whereas EGF promotes the activation of c-Met. Together,
MUC1 expression and EGFR activation would result in the
activated expression of c-Met, driving metastatic progres-

sion. We previously showed that PMIP treatment increases
EGF-dependent degradation of EGFR (39). This data, in
combinationwith the current study,may indicate that PMIP
blocks metastatic progression by blocking both c-Met
expression and its activation via EGFR.
Overall, the body of literature indicates that both MUC1

and c-Met promotemetastatic phenotypes (45–48). A recent
study by Matsubara and colleagues that show that MUC1,
EGFR, and c-Met are coordinately upregulated in aggressive
lung cancer patient samples (49). This human data correlates
with both our current study demonstrating that MUC1
expression can promote c-Met activity and with our previous
study showing that MUC1 promotes EGFR protein stabi-
lization (29). We are currently investigating the mechanism
by which MUC1 and/or EGFR promote increased MET
expression.
Using metastatic breast cancer cells, we showed that

MUC1 promotes cell motility using an in vitro wound-
healing assay. This behavior is reversed upon treatment with
PMIP, illustrating that MUC1 promotion of metastatic
behavior can be targeted therapeutically. This is the first
demonstration of the therapeutic targeting of MUC1 activ-
ity as it relates specifically to metastasis. Recently, Raina and
colleagues demonstrated another decoy peptide, GO-201,
that is designed to block MUC1 multimerization and
nuclear translocation. Results from that study indicated a
loss of tumor growth, but no effects on metastatic potential
were reported (50). Interestingly, Zhang et al., recently
found that PMIP blocks smoke-induced EMT in airway
epithelial cells, another mechanism by which PMIP may be
capable of blocking metastasis (51).
Previous work regarding the role of MUC1 in promoting

metastatic progression indicated that the extracellular
domain of MUC1 was required for its function in this
process (52). None of our studies separated the effects of
the extracellular domain of MUC1 fromMUC1-C per se, in
that we overexpressed the intact protein. While PMIP is
designed to block protein–protein interactions between
MUC1 and EGFR and/orMUC1 and b-catenin, we cannot
rule out the possibility that PMIP also affects the localization
of the MUC1 or EGFR as a whole and, therefore, alters the
interactions of MUC1 with proteins at its extracellular
domain.
Downregulation of c-Met by PMIP showed a reduction in

an important oncogene and metastasis promoter (53). In
addition, c-Met is known to play a role in resistance of
EGFR-positive cancers to EGFR-directed therapies, such as
specific tyrosine kinase inhibitors and monoclonal antibo-
dies. Bean and colleagues assessed c-Met expression in
EGFR-expressing tumors that are resistant to EGFR-tar-
geted therapies and compared them to EGFR-expressing
tumors that had never been exposed to therapies. In their
study, they found that 21% of the tumors with acquired
resistance overexpressed c-Met, whereas only 3% of the
unexposed tumors overexpressed c-Met (54). This study
implicated a c-Met–dependent mechanism for acquiring
resistance to EGFR-targeted therapies. Conversely, it has
also been seen that EGFR activation can contribute to

Control/–EGFA

MUC1/+EGF

DMSO
B

MUC1/+EGF

SU11274
C

Figure 6. c-Met kinase inhibitor (SU11274) inhibitsMUC1 and EGF-driven
cell scattering and invasive phenotype. MDA-MB-231-control cells (A) or
a MDA-MB-231-MUC1 cells (B) were seeded in Matrigel. MDA-MB-231-
MUC1 cells were treated with 10 ng/mL EGF and DMSO (B) or 5 mmol/L
SU11274, a selective c-Met kinase inhibitor (C). Arrowheads indicate
single cells, and arrows indicate branching. Images were taken after
8 days. Scale bar represents 50 mm.
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resistance to c-Met–directed therapies. Bachleitner–Hof-
mann and colleagues examined the effect of a c-Met kinase
inhibitor on c-Met–overexpressing gastric cancer cell lines.
They found that inhibition of c-Met prevented receptor
tyrosine kinase cross-talk; specifically, EGFR and HER3
downstream signaling was reduced upon c-Met kinase
inhibition. However, they found that stimulating cells with
EGF effectively circumvented c-Met kinase inhibition by
activating downstream signaling pathways, such as mitogen-
activated protein kinase and phosphoinositide 3-kinase,
describing onemechanism bywhich c-Met kinase inhibition
can be thwarted (55). Therefore, it may prove that targeting
the activity of both of these receptors may prevent this
resistance from occurring.
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