Abstract
Metastasis is the leading cause of death from breast cancer. A major factor of metastasis is the migration of cancerous cells to other tissues by way of up-regulated chemokine receptors, such as CXCR4, on the cell surface. Much is known of the beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) on cancer; however, the mechanisms behind these effects are unclear. For this study, we investigated the effects of two n-3 PUFAs, docosahexaenoic acid and eicosapentaenoic acid, on CXCR4 expression and activity in the MDA-MB-231 breast cancer cell line. We compared the n-3 PUFAs with the saturated fatty acid stearic acid as a control. Treatment of the cells with n-3 PUFAs resulted in reduced surface expression of CXCR4, but had no effect on overall CXCR4 expression. Consequently, we found that the fatty acid treatment significantly reduced CXCR4-mediated cell migration. Successful CXCR4-mediated signaling and migration requires the cholesterol-rich membrane microdomains known as lipid rafts. Treatment with n-3 PUFAs disrupted the lipid raft domains in a manner similar to methyl-β-cyclodextrin and resulted in a partial displacement of CXCR4, suggesting a possible mechanism behind the reduced CXCR4 activity. These results were not observed in cells treated with stearic acid. Together, our data suggest that n-3 PUFAs may have a preventative effect on breast cancer metastasis in vitro. This suggests a previously unreported potential benefit of n-3 PUFAs to patients with metastatic breast cancer. The data presented in this study may also translate to other disorders that involve up-regulated chemokine receptors. (Mol Cancer Res 2009;7(7):1013–20)
- Omega-3
- Breast Cancer
- Chemokine
- CXCR4
- Metastasis
Footnotes
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
- Received August 14, 2008.
- Revision received November 14, 2008.
- Accepted December 21, 2008.
- © 2009 American Association for Cancer Research.