This article requires a subscription to view the full text. You may purchase access to this article or login to access your subscription using the links below.
Abstract
Resistance to immunotherapy is a significant challenge, and the scarcity of human models hinders the identification of the underlying mechanisms. To address this limitation, we constructed an autologous humanized mouse (aHM) model with hematopoietic stem and progenitor cells (HSPC) and tumors from 2 melanoma patients progressing to immunotherapy. Unlike mismatched humanized mouse (mHM) models, generated from cord blood–derived HSPCs and tumors from different donors, the aHM recapitulates a patient-specific tumor microenvironment (TME). When patient tumors were implanted on aHM, mHM, and NOD/SCID/IL2rg−/− (NSG) cohorts, tumors appeared earlier and grew faster on NSG and mHM cohorts. We observed that immune cells differentiating in the aHM were relatively more capable of circulating peripherally, invading into tumors and interacting with the TME. A heterologous, human leukocyte antigen (HLA-A) matched cohort also yielded slower growing tumors than non–HLA-matched mHM, indicating that a less permissive immune environment inhibits tumor progression. When the aHM, mHM, and NSG cohorts were treated with immunotherapies mirroring what the originating patients received, tumor growth in the aHM accelerated, similar to the progression observed in the patients. This rapid growth was associated with decreased immune cell infiltration, reduced interferon gamma (IFNγ)–related gene expression, and a reduction in STAT3 phosphorylation, events that were replicated in vitro using tumor-derived cell lines.
Implications: Engrafted adult HSPCs give rise to more tumor infiltrative immune cells, increased HLA matching leads to slower tumor initiation and growth, and continuing immunotherapy past progression can paradoxically lead to increased growth.
Footnotes
Note: Supplementary data for this article are available at Molecular Cancer Research Online (http://mcr.aacrjournals.org/).
Mol Cancer Res 2021;19:346–57
- Received August 5, 2020.
- Revision received September 8, 2020.
- Accepted October 14, 2020.
- Published first October 21, 2020.
- ©2020 American Association for Cancer Research.