This article requires a subscription to view the full text. You may purchase access to this article or login to access your subscription using the links below.
Abstract
DNA replication stress (DRS) is a predominant cause of genome instability, a driver of tumorigenesis and malignant progression. Nucleoside analogue-type chemotherapeutic drugs introduce DNA damage and exacerbate DRS in tumor cells. However, the mechanisms underlying the antitumor effect of these drugs are not fully understood. Here, we show that the fluorinated thymidine analogue trifluridine (FTD), an active component of the chemotherapeutic drug trifluridine/tipiracil, delayed DNA synthesis by human replicative DNA polymerases by acting both as an inefficient deoxyribonucleotide triphosphate source (FTD triphosphate) and as an obstacle base (trifluorothymine) in the template DNA strand, which caused DRS. In cells, FTD decreased the thymidine triphosphate level in the dNTP pool and increased the FTD triphosphate level, resulting in the activation of DRS-induced cellular responses during S-phase. In addition, replication protein A–coated single-stranded DNA associated with FancD2 and accumulated after tumor cells completed S-phase. Finally, FTD activated the p53–p21 pathway and suppressed tumor cell growth by inducing cellular senescence via mitosis skipping. In contrast, tumor cells that lost wild-type p53 underwent apoptotic cell death via aberrant late mitosis with severely impaired separation of sister chromatids. These results demonstrate that DRS induced by a nucleoside analogue–type chemotherapeutic drug suppresses tumor growth irrespective of p53 status by directing tumor cell fate toward cellular senescence or apoptotic cell death according to p53 status.
Implications: Chemotherapeutic drugs that increase DRS during S-phase but allow tumor cells to complete S-phase may have significant antitumor activity even when functional p53 is lost.
Footnotes
Note: Supplementary data for this article are available at Molecular Cancer Research Online (http://mcr.aacrjournals.org/).
Mol Cancer Res 2020;18:1354–66
- Received October 25, 2019.
- Revision received April 15, 2020.
- Accepted May 21, 2020.
- Published first May 28, 2020.
- ©2020 American Association for Cancer Research.