The Tumor Suppressor NKX3.1 Is Targeted for Degradation by DYRK1B Kinase

Liang-Nian Song1, Jose Silva2, Antonius Koller3, Andrew Rosenthal4, Emily I. Chen3,5, and Edward P. Gelmann1

Abstract

NKX3.1 is a prostate-specific homeobox protein and tumor suppressor whose expression is reduced in the earliest phases of prostatic neoplasia. NKX3.1 expression is not only diminished by genetic loss and methylation, but the protein itself is a target for accelerated degradation caused by inflammation that is common in the aging prostate gland. NKX3.1 degradation is activated by phosphorylation at C-terminal serine residues that mediate ubiquitination and protein turnover. Because NKX3.1 is haploinsufficient, strategies to increase its protein stability could lead to new therapies. Here, a high-throughput screen was developed using an siRNA library for kinases that mediate NKX3.1 degradation. This approach identified several candidates, of which DYRK1B, a kinase that is subject to gene amplification and overexpression in other cancers, had the greatest impact on NKX3.1 half-life. Mechanistically, NKX3.1 and DYRK1B were shown to interact via the DYRK1B kinase domain. In addition, an in vitro kinase assay showed that DYRK1B phosphorylated NKX3.1 at serine 185, a residue critical for NKX3.1 steady-state turnover. Lastly, small-molecule inhibitors of DYRK1B prolonged NKX3.1 half-life. Thus, DYRK1B is a target for enzymatic inhibition in order to increase cellular NKX3.1.

Implications: DYRK1B is a promising and novel kinase target for prostate cancer treatment mediated by enhancing NKX3.1 levels.

Mol Cancer Res. 13(5): 1–10. © 2015 AACR.

Introduction

Genetic studies commencing decades ago with karyotype analyses and currently represented by whole-genome sequencing have repeatedly and consistently implicated 8p21, the locus of NKX3.1, as the most commonly disrupted genetic target of prostate cancer (1–4). NKX3.1 is a prostate-specific homeobox gene that controls differentiation (5), epithelial cell growth (6), and stem cell maintenance (7). In early prostate cancer, reduced levels of the haploinsufficient NKX3.1 protein are seen in the majority of prostate cancers (8). The degree of protein loss in primary prostate cancer cells is related to Gleason grade, suggesting that prostate cancer phenotype is, to some degree, under control of NKX3.1. During prostate cancer progression, there is selective pressure to decrease NKX3.1 expression further (9). NKX3.1 protein loss is mediated by several mechanisms, including genetic loss, gene methylation, and posttranslational modification (8). For example, phosphorylation at serine 185 controls NKX3.1 steady-state turnover by signaling ubiquitination and subsequent degradation in the proteasome (10). However, NKX3.1 protein is further destabilized by inflammation that releases cytokines causing phosphorylation at serine 196 and markedly decreasing protein half-life. Thus, inhibition of the kinases that trigger protein degradation can increase intracellular NKX3.1 levels and may mediate growth inhibition and differentiation of prostate cancer.

Hypothesizing that kinase inhibition could affect NKX3.1 levels and thereby impact prostate cancer therapy, a kinase siRNA library was screened to select kinases that could affect cellular levels of NKX3.1. Of 720 kinase candidates, seven were found after two rounds of library screening consistently to elevate NKX3.1 levels. As a confirmation of on-target effects, the siRNAs were shown actually to knock down their cognate targets. Among the final candidates, DYRK1B, a developmentally important kinase (11), that has been implicated in cell cycle control (12, 13) and cancer (14), had the greatest effect on NKX3.1. DYRK1B interacted directly with the prostate suppressor protein NKX3.1 and phosphorylated a key residue that signaled protein degradation. Moreover, pharmacologic inhibition of DYRK1B stabilized NKX3.1 protein in cultured cells demonstrating an interaction that should be explored by preclinical development.

Materials and Methods

Cells and culture

The human prostate cell lines LNCaP and HEK (human embryonic kidney)-293T cells were cultured in modified IMEM (improved minimum essential medium; Invitrogen) supplemented with 5% FBS at 5% CO2 and 37°C. For establishment of stable sublines of LNCaP cells expressing PL-N-NKX3.1, LNCaP cells were transfected with PL-N-NKX3.1 and selected in the presence of 500 μg/mL G418. Individual clones were picked and cultured for expansion. Expression of PL-N-NKX3.1 was verified.
by western immunoblotting analysis with anti-NKX3.1 antibody. Clone 7 (PLNKX7) was used for this experiment.

Kinase inhibitors

Compounds NCGC00185981, NCGC00185963, NCGC-00185976, and NCGC00185984 were provided by Craig Thomas, National Cancer Institute, Bethesda, MD. Compound A (16) was purchased from Calbiochem. Compound 39621, a MARK inhibitor, was purchased from EMD Millipore.

Plasmids

Mammalian expression vector encoding full-length human NKX3.1 (pCMV-MYC-NKX3.1) with MYC tag has been reported previously. Flag-tagged murine DYRK1B cloned in p3XFlag-CMV7.1 was provided by Dr. Miyata of Kyoto University, Japan (17). The ProLabel-NKX3.1 fusion construct (PL-N-NKX3.1) was produced by cloning the PCR-amplified full-length NKX3.1 in-frame with the ProLabel-N vector (Clontech). The NKX3.1 fragment was obtained by PCR amplification with pCMV-MYC-NKX3.1 as template using PCR primers that introduce an EcoRI and BamHI sites. PCR products were digested, purified, and subcloned into the EcoRI/BamHI sites of ProLabel-N. The construct was confirmed by direct sequencing.

Chemiluminescent assays

Chemiluminescent detection high throughput 96-well homogeneous assays were performed with the ProLabel Detection Kit II (Clontech) according to the protocol provided by the manufacturer. Briefly, cells in 96-well plates were lysed in their culture medium by adding Lysis/CL Working Solution. Enzyme acceptor reagent (20 μL) was added to each sample and incubated at room temperature for 1 hour. Chemiluminescent signals were measured with a plate reader.

High-throughput siRNA screening

The human kinase siRNA Set V4.1, in a 96-well microtiter plate format, which targets 720 human kinases genes, was purchased from Qiagen. siRNA and transfection reagent concentrations, the transfection method, and efficiency in LNCAp cells were optimized prior to the high-throughput screen (Fig. 2, for example). For first-round screening, the master plate collections consisted of four nonoverlapping duplex siRNAs to each target gene; aliquots from the four sets were pooled into one master plate. Each plate consisted of three negative universal siRNA control came together with the original master plates. These negative controls were AllStars-negative control (Cat 1022780), negative siRNA control (Cat 1022076), and siRNA control against GFP. As a positive control, 20 nmol/L NKX3.1 siRNA was included. In addition, eight wells per plate were used as mock transfection control. For siRNA screening, 1 μL of combined siRNAs were aliquoted into 96-well plates, mixed with 2 μL of Lipofectamine RNAiMAX (Invitrogen), which has been diluted by 10-fold with Opti-MEM (Invitrogen), which has been diluted by 10-fold with Opti-MEM medium by adding Lysis/CL Working Solution. Enzyme acceptor reagent (20 μL) was added to each sample and incubated at room temperature for 1 hour. Chemiluminescent signals were measured with a plate reader.

In vitro DYRK1B kinase assay

GST–DYRK1B was purchased from Life Technologies. His-NKX3.1 was prepared as described previously. In in vitro kinase assay was performed according to the assay conditions reported previously (19, 20). Briefly, 200 ng GST–DYRK1B was incubated with 300 ng His-NKX3.1 for 30 minutes at 30°C in 10 μL kinase buffer (25 mmol/L Hepes pH 7.4, 5 mmol/L MgCl₂, 0.5 mmol/L dithiothreitol) in the presence of 250 μmol/L ATP. For dynamic DYRK1B dose-dependent analyses, in vitro kinase assays were also performed with increasing concentrations of GST-DYRK1B (up to 200 ng per reaction) for different times (from 5 to 120 minutes). Reactions were separated on SDS-PAGE containing 25 μmol/L Phos-tag and 50 μmol/L MnCl₂ transferred onto nitrocellulose membrane. Western blot analysis was performed with rabbit NKX3.1 antibody.

In vivo DYRK1B kinase assay

293T cells were plated onto 100-mm dishes and cotransfected with pcDNA3.1-NKX3.1 with either Flag-mDYRK1B or pcDNA3.1. Cells were harvested and cell lysates were fractionated on SDS-PAGE containing 25 μmol/L Phos-tag and 50 μmol/L MnCl₂ and transferred onto nitrocellulose membrane as described above. NKX3.1 was detected by immunoblotting.

Coimmunoprecipitation

HEK-293T cells were engineered to express MYC–NKX3.1 and Flag-mDYRK1B, and the cell lysates were prepared 48 hours after transfection. Cell lysates were used to perform the
A, LNCaP-PLNKX7 cells were transfected with a plasmid, PL-N-NKX3.1, allowing the expression of a chimeric NKX3.1 protein fused to the ProLabel tag at its C-terminal end. Upon transcription and translation, the PL-N-NKX3.1 fusion protein was phosphorylated and subjected to degradation through the ubiquitin-proteasome pathway. As the enzyme donor, the ProLabel tag in PL-N-NKX3.1 fusion protein can associate with enzyme acceptor (EA) to form an active enzyme that cleaves the chemiluminescent substrate; the resulting signal can be detected with a standard luminometer. Therefore, PL-N-NKX3.1 protein levels could be easily determined by cell-based high-throughput screening assays. B, PL-N-NKX3.1 was transiently transfected into 293T cells, and the fusion protein was stained with NKX3.1 antiserum. C, immunoblots from LNCaP cells transiently transfected with PL-N-NKX3.1 and 48 hours after transfection, cells were treated with cycloheximide for the indicated times. D, immunoblot of extracts from a derivative LNCaP cell line expressing PL-N-NKX3.1 (clone #7, or PLNKX7). Cells were treated with cycloheximide and harvested at the indicated times for detection with NKX3.1 antiserum. E, quantification of the immunoblot in D by densitometric scanning. F, LNCaP-PLNKX7 cells were transfected with NKX3.1 siRNA by reverse transfection. Immunoblotting was performed with NKX3.1 antiserum for both PL-NKX3.1 and endogenous NKX3.1. G, sensitivity of the LNCaP-PLNKX7 detection assay was demonstrated in 96-well plates at LNCaP cell density of 7,000 cells/well. Cells were lysed directly in 96-well plate 4 days after transfection, and chemiluminescence was determined.

Figure 1.
coimmunoprecipitation assays with monoclonal antibody against either Flag (M2; Sigma-Aldrich) or goat NKX3.1 antiserum (Santa Cruz). After extensive washing, the pellets were fractionated by SDS/PAGE (4%–20% gel) and subjected to immunoblotting with anti-Flag antibody or NKX3.1 antiserum.

Identification of NKX3.1 phosphorylation sites by mass spectrometry

The in vitro kinase assay was performed as described above, and the phosphorylated NKX3.1 was run on SDS-PAGE and the gel piece containing NKX3.1 was excised for LC-MS/MS analysis. Dried gel slices were rehydrated and digested in 80 µL 12.5 ng/µL trypsin Gold/50 mmol/L ammonium bicarbonate overnight at 37°C. After the digestion was complete, condensed evaporated water was collected from tube walls by brief centrifugation by a bench-top microcentrifuge (Eppendorf). The gel pieces and digestion reaction were mixed with 50 µL 2.5% trifluoroacetic acid and rigorously mixed for 15 minutes. The solution with extracted peptides was transferred into a fresh tube. The remaining peptides were extracted with 80 µL 70% acetonitrile/5% trifluoroacetic acid mixture using rigorous mixing for 15 minutes. The extracts were pooled and dried to completion (1.5 µL) using a SpeedVac. The concentrated peptide mix was reconstituted in a solution of 2% acetonitrile, 2% formic acid for MS analysis. Peptides were loaded with the autosampler directly onto a 2-cm C18 precolumn and were eluted from the column using a Thermo Easy-nLC1000 UHPLC with a 10-minute gradient from 2% buffer B to 35% buffer B (100% acetonitrile, 0.1% formic acid). The gradient was switched from 35% to 85% buffer B over 1 minute and held constant for 2 minutes. Finally, the gradient was changed from 85% buffer B to 98% buffer A (100% water, 0.1% formic acid) over 1 minute, and then held constant at 98% buffer A for 5 more minutes. The application of a 2.0 kV distal voltage electrosprayed the eluting peptides directly into the mass spectrometer equipped with an Easy-spray source (Thermo Finnigan). The mass spectrometer was set to a targeted analysis method to only acquire CID MS/MS of the expected unphosphorylated (m/z 673.83) and phosphorylated (m/z 713.84) peptides. These MS/MS scans were acquired in the Orbitrap at 15,000 resolution with a scan range of m/z 150–1,500. Mass spectrometer–scanning functions and high-performance liquid chromatography (HPLC) gradients were controlled by the Xcalibur data system (Thermo Finnigan). The acquired MS data were analyzed manually to confirm the precursor mass, fragmentation ions, and serine phosphorylation in the targeted peptide.

Results

Development and validation of a cell-based assay to monitor NKX3.1 stabilization

We developed an assay for screening a kinome siRNA library to identify kinases that caused the degradation of endogenous NKX3.1 in LNCaP cells. To monitor rapidly NKX3.1 levels in cells, ProLabel, a 6-kDa tag that produces a strong chemiluminescent signal in an enzyme complementation reaction, was fused in-frame to the C-terminus of NKX3.1. The screening was carried out with knockdown reagents applied to LNCaP cells transiently transfected with the PL-N-NKX3.1 plasmid. After application of siRNAs, cells were lysed in the culture wells for chemiluminescent assay (Fig. 1A).

The tagged NKX3.1 fusion protein was expressed well in both 293T and LNCaP cells and, like the native protein, localized to the nucleus (Fig. 1B). LNCaP cells transiently transfected with PL-N-NKX3.1 expressed high levels of the fusion protein and LNCaP cells engineered for stable expression of the fusion protein showed levels comparable with the endogenous protein (Fig. 1C and D). Importantly, the fusion protein and the endogenous native protein showed similar half-lives in LNCaP cells (Fig. 1D).

Figure 2.
Chemiluminescence assay of PL-NKX3.1 degradation in 96-well plates. A, schematic diagram of the siRNA strategy for kinome siRNA screening. From master plates, four target-specific siRNAs were pooled into working transfection plates, siRNA pools from each transfection plate were reverse transfected into LNCaP-PLNKX7 cells. After 72 hours of transfection, the plates were treated with cycloheximide for 1 hour. Chemiluminescent assay was performed with the ProLabel Detection Kit II. B, plate-to-plate reproducibility is shown in a pairwise plot of Z-score values from replicate plates 7a and 7b that were the master plates used for first-round screening. Cells were plated in a replicate manner, but the transfections were performed separately at different times. Linear regression indices of the pairwise comparison are shown.
and E). A single LNCaP clone (LNCaP-PLNKX7), selected for high expression of the fusion protein, was shown to undergo knockdown of both endogenous and fusion protein by NKX3.1 siRNA, thus demonstrating its utility for library screening (Fig. 1F and G).

Kinome siRNA library screening

Initial kinome library screening was done by plating LNCaP-PLNKX7 into 96-well plates preloaded with the transfection reagent/siRNA mixture that included four separate siRNA duplexes for each kinase. After 72 hours, 100 μg/mL cycloheximide was added and cells were lysed and assayed after an additional 60 minutes. Each plate contained mock transfections and NKX3.1 siRNA controls (Fig. 2A). Luminescence data were normalized and analyzed using the Z-score method as described in Materials and Methods. Pairwise plots showed plate-to-plate reproducibility of the assay (Fig. 2B). Forty-three genes with average Z scores above 1.415 were selected for secondary screening in order to fill a full microtiter plate. Genes with Z scores of 1.65 or higher were significantly different from control with a P ≤ 0.05. In the second-round screening, the protocol was the same as that used in the primary screening except that each of four specific siRNAs of these target genes were separately transfected into cells and PL-N-NKX3.1 fusion protein expression was monitored after cycloheximide treatment.

We previously showed that mutation of NKX3.1 N-terminal serines individually to alanine changed the NKX3.1 protein half-life 40% to 100% (10). Because we did not expect complete kinase inhibition in our siRNA screening, we first set the screening threshold for NKX3.1 stabilization to 35% increase in residual NKX3.1 compared with mock-transfected cells exposed to cycloheximide. The results of the secondary screenings are shown in Fig. 3A. Ten candidate kinases were selected by the secondary screening. Nine of these, all except BLK, were shown to be expressed in LNCaP cells (Fig. 3B). To validate the effect of the kinases on NKX3.1, we generated a pool of four specific siRNA molecules for each enzyme (SMARTpool; Dharmacon). The validation was performed in the parent LNCaP cells, and the level of endogenous NKX3.1 was assessed by immunoblotting. The expression of each candidate kinase was effectively knocked down by the corresponding siRNA sequences obtained from the kinome siRNA library, indicating these siRNA sequences could be used for our final validation assays (Fig. 3C).

As a final step, we analyzed the effect of each kinase siRNA on endogenous NKX3.1 in LNCaP cells. Specific siRNAs from the library were transfected into LNCaP cells exposed to...
cycloheximide for up to 60 minutes. The immunoblots in Fig. 4A show the effects of kinase inhibition on endogenous NKX3.1. DYRK1B had the most profound effect of the group on NKX3.1 half-life (Fig. 4B). Knockdown of RPS6KA5 or PRKAR1A did not affect the stability of NKX3.1 (data not shown). It should be noted that in the primary and secondary screening assays, knockdown of PRKAR1A always led to a dramatic increase in the level of fusion protein PL-N-NKX3.1 with the highest Z score (average Z score \(= 14.43 \)). This was also true in LNCaP-PLNKX7 cells when it was knocked down with the custom siRNA we synthesized. However, neither of these siRNAs affected the level of endogenous NKX3.1. We did not study the interaction of PRKAR1A with the PL-N-NKX3.1 fusion protein, but made the preliminary conclusion that the effect seen in the screening was an artifact of the fusion protein and not related to native NKX3.1. PRKAR1A would not have been a likely candidate for NKX3.1 suppression as the kinase subunit itself is a suppressor protein whose inactivation is associated with a syndrome of benign neoplasia, Carney’s triad (21).

Physical association of NKX3.1 with DYRK1B
Knockdown of DYRK1B by siRNA was consistently found to have the most pronounced effect on NKX3.1 half-life. We were able to demonstrate physical association between the two proteins. We used Flag-tagged DYRK1B and exogenous NKX3.1 expression in 293T cells (Fig. 5A). Kinase-dead DYRK1B that was inactivated by missense mutation (DYR1B-KD) was still able to associate with NKX3.1. However, the DYRK1B N-terminus alone (DYRK1B-ΔKD) did not bind to NKX3.1 (Fig. 5B). Thus, the kinase domain is the likely site of interaction with NKX3.1.

DYRK1B phosphorylates NKX3.1 in vitro
We demonstrated in vitro phosphorylation of polyhistidyl-NKX3.1 by purified GST-DYRK1B (22). The reaction products were separated on SDS-PAGE containing 25 μmol/L Phos-tag and 50 μmol/L MnCl₂ and transferred onto nitrocellulose membrane. Both phosphorylated and native NKX3.1 were visualized by immunoblotting with NKX3.1 antibody. Retardation of phosphorylated NKX3.1 was seen to be dependent on DYRK1B concentration and time (Fig. 5C). In addition, Flag-DYRK1B expression in 293T cells resulted in phosphorylation of exogenously expressed MYC-NKX3.1 in vivo. MYC-NKX3.1 was cotransfected with either Flag-mDYRK1B or pcDNA3.1 vector control into 293T cells, and NKX3.1 phosphorylation was seen and reversed by addition of phage-λ phosphatase (Fig. 5D). Moreover, 185981 inhibited phosphorylation of MYC-NKX3.1 by DYRK1B.

To map the phosphorylation sites in NKX3.1 by DYRK1B, in vitro kinase reaction products were separated by conventional SDS-PAGE, excised, digested with trypsin, and analyzed by mass spectrometry (MS/MS). We used LC-MS/MS analysis to detect the tryptic peptide containing S185 from in vitro phosphorylated NKX3.1. Correct precursor mass and fragment ion masses of the targeted peptide were manually verified. Neutral loss of S185 was identified and manually verified in the acquired tandem mass spectra as shown in Fig. 6A. Serine 185, a key residue in signaling NKX3.1 turnover, is highly conserved across species (Fig. 6B).

DYRK1B inhibitors extend NKX3.1 half-life
Because our long-term goal is the pharmacologic increase of intracellular NKX3.1 in prostate cancer, we asked whether small molecule DYRK1B inhibitors affected the half-life of NKX3.1.

Figure 4.
Kinase knockdown of NKX3.1 expression. A, LNCaP cells were transfected with control or kinase siRNA. Cycloheximide (100 μg/mL) was added at 72 hours after and cell extracts were prepared at the indicated times for immunoblots. B, immunoblots were quantitated with Image J, and NKX3.1 half-life was determined using Graph Pad Prism.
Figure 5.
Interaction between NKX3.1 and DYRK1B. A, 293T cells transfected with MYC-NKX3.1 and Flag-tagged mDYRK1B were lysed and subjected to immunoprecipitation with α-Flag (M2) or mouse IgG. Immunoprecipitates were analyzed by immunoblotting with either MYC or Flag antibodies. The arrows indicate specific protein bands. B, 293T cells were engineered as in A to express NKX3.1 and murine DYRK1B constructs as shown below the gels. C, dose and time-dependence of NKX3.1 association with DYRK1B. GST-DYRK1B (0–200 ng/reaction) and His-NKX3.1 were combined in an in vitro kinase assay in the presence of ATP as described in Materials and Methods. Reactions were separated on SDS-PAGE containing 25 mmol/L Phos-tag and 50 mmol/L MnCl2. NKX3.1 was detected by immunoblotting with NKX3.1 antiserum. D, top, 293T cells expressing MYC-NKX3.1 and transfected with either pcDNA3.1 or Flag-mDYRK1B were analyzed for phosphorylation or diluted about 200-fold with phage λ phosphatase buffer followed by concentrating with Amicon Centricon YM-10 and Amicon Ultra-0.5 mL (10K). The cleared and concentrated lysates were then treated with λ phosphatase for 60 minutes at 30°C and analyzed with 25 mmol/L Phos-tag. Bottom, 293T cells expressing MYC-NKX3.1 and transfected with either pcDNA3.1 or Flag-mDYRK1B were treated with or without 1 μmol/L 185981 for 16 hours. NKX3.1 phosphorylation was determined by immunoblotting a gel run with 20 μmol/L Phos-Tag.
Using the same assay of endogenous NKX3.1 half-life shown in Fig. 4, we treated LNCaP cells with DYRK1B inhibitors after the cells had been exposed to cycloheximide for one hour. The compounds listed in Table 1 all prolonged NKX3.1 half-life. The most active compound was NCGC00185981 that has specificity against both DYRK and CLK family kinases with high affinity for DYRK1B (23). A second compound with higher IC50 for DYRK1B but with no specificity for CLK kinases NCGC00185984 was not as active in blocking NKX3.1 degradation. A MARK2 inhibitor, 39621, was used because MARK2 was one of the kinases identified in the second-round kinome library screening (24). Compound 39621 was substantially less active as an inhibitor of NKX3.1 degradation than the DYRK1B inhibitors.

Discussion

Both pathologic and physiologic processes contribute to the erosion of NKX3.1 expression in the aging prostate gland. Loss of this protein results in increased propensity for proliferation, susceptibility to DNA damage, and increased frequency of TMPRSS2-ERG gene rearrangement (8, 25, 26). In mouse models, heterozygosity of Nkx3.1 has minimal effect on prostate function as shown by effects on prostatic fluid, but more profound effects on cell proliferation (5). In fact, Nkx3.1 heterozygosity predisposes to prostatic hyperplasia and dysplasia not dissimilar from complete loss of Nkx3.1, but with longer latency. Nkx3.1 heterozygosity also potentiates the effect of Pten heterozygosity on prostatic neoplasia (27). With the ultimate goal of inhibiting NKX3.1 loss in the prostate, we have identified at least one kinase that targets NKX3.1 for phosphorylation important for steady-state protein turnover. DYRK1B was shown to phosphorylate NKX3.1 at serine 185, a key signal for ubiquitination subsequent proteasomal degradation (10).
Dual-specificity tyrosine-regulated kinase 1B (DYRK1B) or minibrain-related kinase (Mirk) is a nuclear serine-threonine kinase activated by tyrosine autophosphorylation (11). DYRK1B is a member of the conserved DYRK/minibrain family of tyrosine-regulated, arginine-directed serine/threonine protein kinases (28). DYRK1B is highly expressed in the testis and skeletal muscle and plays an important role in muscle differentiation, cell survival, and cell migration. More recently, it has been revealed that DYRK1B phosphorylates and stabilizes the cyclin-dependent kinase (CDK) inhibitor p27 in nontransformed cells, thus contributing to maintenance of cell quiescence (29). DYRK1B also phosphorylates and destabilizes cyclins D1 and D3 and therefore blocks quiescent cells from traversing G1 phase of the cell cycle (30, 31).

DYRK1B has paradoxically also been shown to be pro-oncogenic and its inhibition results in growth inhibition of several cancer cell lines (14–16). DYRK1B effect on cell proliferation may be due in part to activation of cyclin D1 (12) and suppression of p27/Kip1 (13). In addition, a number of small molecule inhibitors of DYRK1B have been developed (25, 32). Thus, DYRK1B is already a target of investigational cancer therapy. DYRK1B inhibition retards the growth of cancer cells in model systems. Inhibition of DYRK1B in prostate cancer will have the tissue-specific effect of increasing levels of the NKX3.1 suppressor protein besides its effect on cell cycle regulators. For these reasons, DYRK1B is a novel and potentially important therapeutic target with unique relevance to prostate cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: L.-N. Song, J. Silva, A. Rosenthal, E.P. Gelmann
Development of methodology: L.-N. Song, J. Silva, E.P. Gelmann
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): A. Koller, A. Rosenthal, E.I. Chen, E.P. Gelmann
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): L.-N. Song, A. Koller, E.I. Chen, E.P. Gelmann
Writing, review, and/or revision of the manuscript: L.-N. Song, E.P. Gelmann
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A. Rosenthal, E.I. Chen, E.P. Gelmann
Study supervision: E.P. Gelmann

Grant Support
This study was supported in part by Department of Defense Prostate Cancer Research Program W81XWH-11-1-0177, NCi grant P01 CA154293, and CCGS P30 CA013696-36 via the Bioinformatics Shared Resource and 5 P30 CA013696-3953 to the Proteomics Shared Resource.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 16, 2014; revised March 3, 2015; accepted March 4, 2015; published OnlineFirst March 16, 2015.

Reference

The Tumor Suppressor NKX3.1 Is Targeted for Degradation by DYRK1B Kinase

Liang-Nian Song, Jose Silva, Antonius Koller, et al.

Mol Cancer Res Published OnlineFirst March 16, 2015.

Updated version Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-14-0680

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.