lincRNA-RoR and miR-145 Regulate Invasion in Triple-Negative Breast Cancer via Targeting ARF6

Gabriel Eades, Benjamin Wolfson, Yongshu Zhang, Qinglin Li, Yuan Yao, and Qun Zhou

Abstract

Triple-negative (ER\(^{-}\), HER2\(^{-}\), PR\(^{-}\)) breast cancer (TNBC) is an aggressive disease with a poor prognosis with no available molecularly targeted therapy. Silencing of microRNA-145 (miR-145) may be a defining marker of TNBC based on molecular profiling and deep sequencing. Therefore, the molecular mechanism behind miR-145 downregulation in TNBC was examined. Overexpression of the long intergenic noncoding RNA regulator of reprogramming, lincRNA-RoR, functions as a competitive endogenous RNA sponge in TNBC. Interestingly, lincRNA-RoR is dramatically upregulated in TNBC and in metastatic disease and knockdown restores miR-145 expression. Previous reports suggest that miR-145 has growth-suppressive activity in some breast cancers; however, these data in TNBC indicate that miR-145 does not affect proliferation or apoptosis but instead, miR-145 regulates tumor cell invasion. Investigation of miR-145-regulated pathways involved in tumor invasion revealed a novel target, the small GTPase ADP-ribosylation factor 6 (Arf6). Subsequent analysis demonstrated that Arf6, a known regulator of breast tumor cell invasion, is dramatically upregulated in TNBC and in breast tumor metastasis. Mechanistically, Arf6 regulates E-cadherin localization and affects cell–cell adhesion. These results reveal a lincRNA-RoR/miR-145/Arf6 pathway that regulates invasion in TNBCs.

Implications: The lincRNA-RoR/miR-145/Arf6 pathway is critical to TNBC metastasis and could serve as biomarkers or therapeutic targets for improving survival. Mol Cancer Res; 13(2): 1–9. ©2014 AACR.

Introduction

Breast cancer is the second leading cause of cancer-related deaths among women (1). Obstacles to improving clinical outcomes include better understanding of disease recurrence, overcoming drug resistance, and preventing metastasis. Improvements in breast cancer clinical treatment have come from rationally designed molecularly targeted therapeutics. For patients with estrogen receptor (ER)–positive disease, antiestrogen treatments, including selective ER modulators and aromatase inhibitors, have been a major success story. Furthermore, treatment of HER2/neu-overexpressing breast cancers with the recombinant humanized anti-HER2 monoclonal antibody trastuzumab has dramatically improved prognosis for these patients. For patients with triple-negative breast cancer (TNBC), those lacking ER, PR, and HER2 expression, there are currently no available molecularly targeted therapeutics (2). TNBC accounts for around 20% of cases of breast cancer in the United States where it is frequently observed among younger women and African American women (3). TNBC is frequently aggressive and fast growing but it does respond to chemotherapy. Nevertheless, understanding the molecular mechanisms driving TNBC will allow rational target selection and new drug development.

Dysregulation of microRNAs (miR) is emerging as a major contributor to tumorigenesis in breast cancers. In a recent study, Volinia and colleagues (4) examined breast tumor deep sequencing data in an attempt to identify miRs linked with breast tumor invasiveness. When comparing miR dysregulation in different molecular subtypes, they found that miR-145 was among the most significantly repressed miRs in TNBC. miR-145 is a reported growth suppressor downregulated in many cancer, including lung (5), prostate (6), breast (7), colon (8), and bladder cancers (9).

Recently, a role for miR-145 in the regulation of embryonic stem cell (ESC) renewal was reported (10). Levels of miR-145 in ESCs remain low, whereas upon forced differentiation, miR-145 levels increase dramatically and levels of pluripotency factors OCT4, SOX2, and KLF4 decrease. OCT4, SOX2, and KLF4 were all confirmed to be direct targets of miR-145 in ES cells and embryoid bodies. In addition to regulating ESC renewal, miR-145 has also been shown to be a regulator of adult stem cell renewal. miR-145 was found to regulate mesenchymal stem cell differentiation by targeting SOX9 (11), a master regulator of chondrocyte maturation that has also been implicated as an important regulator of the mammary stem cell state (12).

Long noncoding RNAs (lncRNA) are noncoding RNA molecules greater than 200 nucleotides in size that are often critical regulators of gene expression. A majority of lncRNAs are intergenic [long intergenic ncRNA (lincRNA); ref. 13]. They are transcribed by RNA pol II, polyadenylated, spliced, and 5’ capped (14). LncRNAs are functionally diverse and can act as guides, tethers, decoys, and scaffolds (15). A new function of lncRNA has also been proposed, that of competitive endogenous RNA (ceRNA) for miRs or naturally occurring miR sponges. Such
ceRNA networks have been identified as key regulators of muscle differentiation (16) and in the PTEN tumor-suppressor pathway (17).

Recently, lncRNAs were implicated in stem cell pluripotency. Loewer and colleagues (18) identified lincRNA-RoR (regulator of reprogramming) as a major regulator of pluripotency by examining lncRNA expression, following fibroblast reprogramming into induced pluripotent stem cells (iPSC). lincRNA-RoR was dramatically upregulated in pluripotent cells. Furthermore, they found that lincRNA-RoR was essential for iPSC derivation. Wang and colleagues (19) also examined the role of lincRNA-RoR in ESCs and found that lincRNA-RoR is essential for ESC pluripotency. Furthermore, they found that lincRNA-RoR functions as ceRNA for miR-145, thereby protecting core pluripotency factors from miR-mediated silencing. This group found that this interaction led to loss of mature miR-145 expression. Using RNA immunoprecipitation experiments they validated the interaction of miR-145 with lincRNA-RoR, which they found could be disrupted by mutating bases in the target sites for miR-145 seed pairing.

ARF proteins (ARF1-6) are small GTPases that regulate membrane protein trafficking and endocytosis (20). ARF6 was previously implicated in tumor cell invasion in breast (21), brain (22), and skin (23, 24) cancer. In breast cancer, ARF6 was found to be essential for tumor cell invasion (21). Hyperactivation of ARF6 was able to impart metastatic characteristics to nonmetastatic breast cancer cells. It was hypothesized that ARF6 may function by inhibiting cell–cell adhesion or regulating formation of invadopodia. This group found that protein, but not mRNA levels of ARF6, correlated with breast tumor invasiveness and suggested that in metastatic breast cancer, ARF6 was likely regulated via posttranscriptional mechanisms (21). ARF6 has been identified as a novel target of miR-145, which was previously implicated in the breast tumor microarray (TMA; BR952; US Biomax) was performed to detect ARF6 protein expression. Additional paraffin-embedded ductal carcinoma in situ (DCIS) samples were obtained from the University of Maryland Pathology Biorepository and Research Core. Sections were deparaffinized and rehydrated using xylene and gradient ethanol. Antigens were retrieved by boiling in sodium citrate (10 mmol/L, pH 6.0), which was proceeded by blocking in 10% goat serum in PBS for 1 hour. This was followed by overnight incubation (at 4°C) with mouse anti-ARF6, 1:200 in blocking buffer (Santa Cruz Biotechnology; sc7971) followed with biotin goat anti-mouse secondary antibody (1:200). The Avidin-Biotin Peroxidase Substrate Kit (Vector Laboratories) was used to develop brown precipitate. Hematoxylin was used for nuclei staining. Using light microscopy, cores were scored on a 0 to 3 scale (none, light, moderate, and intense) for staining intensity of ARF6.

Human tissue array

Immunostaining of paraffin-embedded breast tumor tissue microarray (TMA; BR952; US Biomax) was performed to detect ARF6 protein expression. Additional paraffin-embedded ductal carcinoma in situ (DCIS) samples were obtained from the University of Maryland Pathology Biorepository and Research Core. Sections were deparaffinized and rehydrated using xylene and gradient ethanol. Antigens were retrieved by boiling in sodium citrate (10 mmol/L, pH 6.0), which was proceeded by blocking in 10% goat serum in PBS for 1 hour. This was followed by overnight incubation (at 4°C) with mouse anti-ARF6, 1:200 in blocking buffer (Santa Cruz Biotechnology; sc7971) followed with biotin goat anti-mouse secondary antibody (1:200). The Avidin-Biotin Peroxidase Substrate Kit (Vector Laboratories) was used to develop brown precipitate. Hematoxylin was used for nuclei staining. Using light microscopy, cores were scored on a 0 to 3 scale (none, light, moderate, and intense) for staining intensity of ARF6.

Materials and Methods

Cell culture

HEK293T, MCF-7, HS578T, and MDA-MB-231 cells were maintained in DMEM with 5% FBS and 1% glutamine (Invitrogen). MCF10A were grown in DMEM/F-12 medium supplemented with 10 μg/mL insulin, 100 ng/mL cholaer toxin, 0.5 μg/mL hydrocortisone (Sigma), 20 ng/mL EGF, and 5% horse serum (Invitrogen). Cells were grown at 37°C in an atmosphere containing 5% CO₂.

Western blotting and proliferation assay

Western blotting was performed as previously described (25) using ARF6 (Santa Cruz Biotechnology 3A-1), E-cadherin (BD Transduction), or N-cadherin (Santa Cruz Biotechnology H-63) antibodies. Data were normalized to β-actin (Sigma). For proliferation assays, 1 × 10⁴ MDA-MB-231 cells (control and overexpressing miR-145) were plated in 96-well plates. After 3 days, MTT solution was added to wells [final (0.5 mg/mL)]. Cells were incubated for 4 hours at 37°C. Media were removed and MTT formazan crystals were solubilized in DMSO. Absorbance was measured at 560 nm in a microplate reader (Bio-Rad).

Plasmids, transfections, and luciferase assay

pCMV-miR-145 expression vector and pCMV-MIR control vectors were obtained from Origene. pBabe–lincRNA-RoR was obtained from Addgene (plasmid 45763). shRNA for lincRNA-RoR and scramble control shRNA was purchased from Origene using pGFP-C-shLenti backbone and the following target sequence: GGAAGCCCTGAGATGAGAGTGGC. ARF6 3′-untranslated region (UTR) was amplified using the following primers: F: AGGAGTTGAGTGCCAGC TACAGTGAGG; R: GGCGCCAGCCAGGC R: AGAACAGTATTTCCAGGAAT. ARF6 and ROR data were normalized to GAPDH using the following primers: F: GAAGGTCAGAGGTTCCAGAC; R: GGAGAT-GTGATCGAGGATTT. All real-time PCR was carried out with the Light Cycler 480 II (Roche Diagnostics).

Human tissue array

Immunostaining of paraffin-embedded breast tumor tissue microarray (TMA; BR952; US Biomax) was performed to detect ARF6 protein expression. Additional paraffin-embedded ductal carcinoma in situ (DCIS) samples were obtained from the University of Maryland Pathology Biorepository and Research Core. Sections were deparaffinized and rehydrated using xylene and gradient ethanol. Antigens were retrieved by boiling in sodium citrate (10 mmol/L, pH 6.0), which was proceeded by blocking in 10% goat serum in PBS for 1 hour. This was followed by overnight incubation (at 4°C) with mouse anti-ARF6, 1:200 in blocking buffer (Santa Cruz Biotechnology; sc7971) followed with biotin goat anti-mouse secondary antibody (1:200). The Avidin-Biotin Peroxidase Substrate Kit (Vector Laboratories) was used to develop brown precipitate. Hematoxylin was used for nuclei staining. Using light microscopy, cores were scored on a 0 to 3 scale (none, light, moderate, and intense) for staining intensity of ARF6.

Human tissue array

Immunostaining of paraffin-embedded breast tumor tissue microarray (TMA; BR952; US Biomax) was performed to detect ARF6 protein expression. Additional paraffin-embedded ductal carcinoma in situ (DCIS) samples were obtained from the University of Maryland Pathology Biorepository and Research Core. Sections were deparaffinized and rehydrated using xylene and gradient ethanol. Antigens were retrieved by boiling in sodium citrate (10 mmol/L, pH 6.0), which was proceeded by blocking in 10% goat serum in PBS for 1 hour. This was followed by overnight incubation (at 4°C) with mouse anti-ARF6, 1:200 in blocking buffer (Santa Cruz Biotechnology; sc7971) followed with biotin goat anti-mouse secondary antibody (1:200). The Avidin-Biotin Peroxidase Substrate Kit (Vector Laboratories) was used to develop brown precipitate. Hematoxylin was used for nuclei staining. Using light microscopy, cores were scored on a 0 to 3 scale (none, light, moderate, and intense) for staining intensity of ARF6.
primes: F: CAGTACGCTAGCCACTGTCCAGTGCAATG G: CAGTACCTCAGGAAAATCAGC CCCAGGTGCGCA. PCR product was cloned downstream luciferase ORF into NheI and XhoI sites in pSGG3’LTR reporter (Switchgear Genomics). For pSGG–ROR luciferase reporter construct, ROR cDNA was amplified using the primers 5’-AACAATGGCTAGTATATTTTGAGGAACTGTCATA-3’ and 5’-AACAATGGCTAGGGGTGAAATACACCGCATGTCCT-3’ and cloned into the NheI and XhoI sites of pSGG vector. Transient transfections were performed using lipofectamine 2000 according to the manufacturer’s instructions (Invitrogen). Stable infections were performed for lentiviral constructs. Briefly, HEK293T cells were transfected with second-generation lentiviral packaging constructs and expression constructs. After 12 hours, medium was changed and at 24 and 48 hours lentivirus containing supernatant was harvested. Cells were infected with virus containing medium containing 8 μg/mL polybrene (American Bioanalytical). Luciferase reporter assays were performed as previously described using the dual luciferase assay system (Promega) normalizing to Renilla luciferase activity (26).

Transwell invasion assay
Invasion assays were carried out using Transwell migration chambers (8-μm pore size; Costar) coated with 0.5 mg/mL Matrigel (BD Biosciences) on top of the membrane. A total of 0.5 × 10^5 cells/mL were seeded in the upper chamber in serum-free medium. The lower chamber contained 15% FBS. The cells were allowed to migrate toward the 15% FBS gradient overnight. Nonmigrated cells on the top of the membrane were removed with cotton swabs. The migrated cells were stained with 1% crystal violet in methanol/PBS and counted using a light microscope.

The Cancer Genome Atlas
Data from The Cancer Genome Atlas (TCGA) were analyzed using the UCSC Cancer Genome Browser (http://genome-cancer.ucsc.edu/). The publically available dataset analyzed was the TCGA breast-invasive carcinoma exon expression by RNAseq (IlluminaHiSeq) N = 1,160. ER, PR, and HER2 status were analyzed using UCSC Cancer Browser tools.

Statistical analysis
Statistical analysis was performed using the Student t test and P values of <0.05 were considered significant. Data were represented as mean ± SE. GraphPad Prism 4.0 software was used for all data analysis.

Results
miR-145 is downregulated in TNBC in which miR-145 regulates breast tumor cell invasion
The molecular underpinnings of TNBC are poorly understood and as such, there are no available molecularly targeted therapies. To gain a better understanding of the pathways driving tumorigenesis in TNBC, we began by examining the unique miR signatures of this breast cancer subtype. Analysis of breast tumor deep sequencing data had previously revealed that miR-145 loss is a hallmark of TNBC (4). We began our study by using publicly available databases to verify previous observations regarding miR-145 expression. We examined RNAseq data from TCGA, which contained data from 1,106 breast cancer patient samples. As shown in Fig. 1A, miR-145 is downregulated in nearly every breast tumor sample compared with normal breast tissue (fold Δ and P value shown in Supplementary Fig. S1; ref. 28). Furthermore, we examined ER, PR, and HER2 status in patient data from TCGA and found that patients with TNBC clustered with the tumors having the lowest miR-145 expression. We also examined miR-145 expression in several samples of invasive ductal carcinoma (IDC) and matched normal tissue and again identified miR-145 loss in all samples of breast tumor tissue (Fig. 1B). Next, we examined TNBC cell models MDA-MB-231 and HS578T compared with the enontumorigenic mammary epithelial cell line MCF10A and the ER-positive breast cancer cell line MCF-7. We observed the strongest repression of miR-145 in TNBC models compared with
nontumorigenic mammary epithelial cells or ER-positive breast cancer cells (Fig. 1C). Combined with previous studies, these data strongly indicate that miR-145 is dramatically silenced in TNBC.

Next, we began investigating what function miR-145 may play in TNBC. In ER-positive breast cancer, miR-145 was previously shown to regulate tumor cell proliferation (29). We examined the impact of miR-145 overexpression on the proliferation of MDA-MB-231 cells. We found that in TNBC cells miR-145 activation failed to significantly affect cell proliferation as examined via MTT assay (Fig. 1D). Furthermore, we also examined cell proliferation by performing Ki67 staining. We found that nearly 100% of control MDA-MB-231 cells and miR-145-overexpressing cells positively stained for nuclear Ki67, indicating active proliferation (Supplementary Fig. S2A).

We next examined what impact miR-145 might have on tumor cell invasion in TNBC. We grew cells on Matrigel-coated Transwell inserts and tested the impact of miR-145 overexpression. We found that miR-145-overexpressing TNBC cells demonstrated a significant decrease in tumor cell invasion compared with control cells (Fig. 1E and F). These data suggest that miR-145 may regulate invasion-related gene expression in TNBC. We also confirmed these results in a separate TNBC cell line, HS578T, again finding that miR-145 affects invasion but not proliferation in TNBC cells (Supplementary Fig. S2B and S2C).

lincRNA-RoR is overexpressed in TNBC in which it serves as competitive endogenous RNA for miR-145

We next wanted to identify the molecular mechanisms responsible for miR-145 downregulation in TNBC. It was recently shown that in ESCs miR-145 is subjected to posttranscriptional regulation via competitive endogenous RNA (19). lincRNA-RoR was found to contain miR-145-binding elements and function as a competitive sponge for miR-145 binding. To test whether lincRNA-RoR might regulate miR-145 in TNBC, we began by examining the expression profile of lincRNA-RoR in normal breast tissue, early-stage tumors (DCIS), and
lincRNA-RoR and miR-145 Regulate Invasion in Triple-Negative Breast Cancer

We next wanted to confirm the interaction of miR-145 with the sites predicted by Miranda (30) targeting algorithms (Fig. 2C). We began by testing the impact of lincRNA-RoR overexpression on miR-145 levels in HEK-293t cells (which lack lincRNA-RoR expression). We found that lincRNA-RoR overexpression resulted in a significant decrease in miR-145 levels (Fig. 2D). Next, we examined the impact of cotransfection of miR-145 and lincRNA-RoR and found that cotransfection overcame the negative repression of endogenous miR-145 and resulted in decreasing lincRNA-RoR levels. This suggests a tug of war between these two molecules with some threshold where either the miR or the lincRNA gains the upper hand and silences its partner. We also cloned lincRNA-RoR sequence into a luciferase miR reporter construct to examine the ability of miR-145 to bind sequences in lincRNA-RoR. We found that miR-145 overexpression resulted in decreased luciferase activity compared with control cells (Fig. 2F), indicating miR-145 binding to sites in lincRNA-RoR. Next, we examined this interaction in breast cancer cell lines. We found that lincRNA-RoR overexpression resulted in decreasing mature, but not primary or precursor miR-145 levels in MDA-MB-231 TNBC cells (Fig. 2G). Finally, using lentiviral shRNA, we knocked down lincRNA-RoR in MDA-MB-231 cells and found that this lead to an increase in miR-145 expression. Taken together, these results suggest that in TNBC cells lincRNA-RoR can function as a sponge and repress miR-145 expression.

Finally, we examined whether lincRNA-RoR regulation of miR-145 could affect breast cancer cell invasion. We transfected MCF7

Figure 2.
cells with tetON–lincRNA-RoR + rtTA and after 24 hours induced lincRNA-RoR expression with 100 ng/mL doxycycline. Induced cells were grown atop Matrigel-coated Transwell inserts and cells were allowed to migrate for 24 hours. Following 24 hours, we observed a significant increase in invasive cells, whereas control MCF7 cells showed little to no invasive activity (Supplementary Fig. S4A).

miR-145 directly targets the 3' UTR of ARF6 mRNA

In addition to understanding the molecular mechanisms underlyng the regulation of miR-145, we wanted to probe what invasive pathways miR-145 might regulate in TNBC cells. We examined computationally predicted targets of miR-145 using TargetScan algorithm (31). Among the highest scoring predicted mRNA targets of miR-145 was ADP-ribosylation factor 6 (ARF6). ARF6 is a small GTPase that has been previously implicated as a critical regulator of tumor cell invasion in metastatic breast cancer (21). A previous proteomics study revealed that miR143/145 modulation altered ARF6 protein levels in colon cancer cells, suggesting that ARF6 might be a direct target for miR-145 (32). ARF6 mRNA 3'UTR contains an impressive five predicted miR-145-binding elements (Fig. 3A). We began by examining ARF6 expression in TNBC. We found that ARF6 was dramatically overexpressed in TNBC cells compared with nontumorigenic mammary epithelial cells (Fig. 3B and C). To test the predicted binding of miR-145 to ARF6 mRNA, we cloned the ARF6 3'UTR downstream a luciferase ORF and performed luciferase reporter assays for ARF6 3'UTR. We found that overexpression of miR-145 resulted in a significant decrease in luciferase activity compared with control cells (Fig. 3D). Next, we examined ARF6 expression in MDA-MB-231 cells following miR-145 overexpression. We detected a small but significant decrease in ARF6 mRNA levels following miR-145 overexpression (Fig. 3E). However, following miR-145 overexpression, we detected a dramatic decrease in ARF6 protein levels (Fig. 3F). These data suggest that miR-145 inhibition of ARF6 is mostly occurring by interfering with ARF6 translation. Finally, to test whether our previously
identified interaction between lincRNA-RoR and miR-145 affect
the targeting of ARF6 mRNA by miR-145, we examined ARF6
protein levels following knockdown of lincRNA-RoR by shRNA.
We found that knockdown of lincRNA-RoR in MDA-MB-231 cells
resulted in decrease in ARF6 protein (Supplementary Fig. S4B).
These results support a lincRNA-RoR/miR-145/ARF6 pathway in
TNBC cells.

It was previously reported that ARF6 might contribute to
breast cancer invasion via regulating invadopodia or by
regulating cell–cell adhesion through controlling E-cadherin
localization (33, 34). This group found that in the presence of
EGF ligand (activating EGFR signaling) ARF6 was able to
repress E-cadherin at the protein level. We examined the
impact of overexpression of constitutively active ARF6 on the
invasive activities of nonmetastatic MCF-7 breast cancer cells.
As confirmation of the earlier observations, we found that in
the presence of EGF, MCF-7 cells overexpressing ARF6 showed a
decrease in E-cadherin protein levels (Fig. 3G). Furthermore,
MCF-7 cells overexpressing ARF6 were capable of invading
Matrigel in Transwell invasion assays as evidenced by the
staining of invasive protrusions on the bottom of Transwell
inserts, whereas control MCF-7 cells demonstrated no invasive
capabilities in this assay (Fig. 3H).

ARF6 overexpression alters E-cadherin localization and
disrupts cell–cell junctions
To further examine the potential importance of ARF6
overexpression in breast cancer, we performed gain-of-function
studies in MCF10A nontumorigenic mammary epithelial cells.
We performed three-dimensional (3D) cell culture experiments
with MCF10A cells overexpressing ARF6 and examined E-
cadherin localization using immunofluorescence. 3D cell
culture can be used to recapitulate mammary organogenesis
in which control MCF10A cells grow into hollow acinar structures
with polarized luminal and basolateral surfaces. Control MCF10A
cells formed hollow acini structures with E-cadherin localization
to cell–cell junctions (Fig. 4A). In ARF6-overexpressing MCF10A
cells, there was an obvious loss of E-cadherin expression and
localization to cell–cell junctions. Furthermore, morphology of
ARF6-overexpressing acini was altered with greater spacing
between nuclei as evidenced by DAPI staining, suggesting a
disruption in cell–cell junctions.

The miR-145 target ARF6 is overexpressed in lymph node
metastasis
As there is previously no clinical data suggesting that ARF6
expression is associated with breast tumor invasiveness, we
examined ARF6 expression using IHC in a TMA with core
samples from matched normal breast, primary tumor, and
lymph node metastasis (Fig. 4B). We detected higher levels
of ARF6 in some samples of primary tumor (IDC); however, it
did not account for a statistically significant difference with
ARF6 levels detected in our normal breast tissue. On the other
hand, we did detect a statistically significant increase in ARF6
expression in lymph node metastasis (Fig. 4B).

Figure 4.
The miR-145 target ARF6 is
overexpressed in lymph node
metastasis. A, 3D cell culture of
MCF-10A cells stably infected with
ARF6. Cells are grown in EGF
supplemented media (10 ng/mL) for 7
days followed by fixation and staining
with ARF6 and E-cadherin antibodies
followed by DAPI counterstaining.
Acinii were examined via confocal
microscopy. B, IHC for ARF6 was
performed on a TMA of matched normal
and breast tumor tissue, including matched primary and lymph node metastasis core samples.
Normal tissue n = 5, DCIS n = 6,
IDC n = 26, MET n = 9.

Figure 5.
Illustration of miR-145 regulation of TNBC invasion. This is our proposed model for miR-145 regulation of TNBC invasion. Competition between
lincRNA-RoR and miR-145 prevents
miR-mediated suppression of ARF6, this
in turn leads to overexpression of ARF6 and altered E-cadherin localization.
staining in lymph node metastasis cores \((P < 0.03)\). These data offer support for the clinical relevance of ARF6 in breast cancer metastasis.

Discussion

Deep sequencing studies have previously shown that miR-145 downregulation is a hallmark of TNBC \((4)\). Here, using Transwell invasion assays, we have found that miR-145 regulates tumor cell invasion in TNBC and not apoptosis or proliferation. We examined the molecular mechanism responsible for miR-145 downregulation in TNBC and found that the lincRNA-RoR regulates mature miR-145 by serving as a competitive endogenous RNA sponge. This is the first report of this ceRNA network in human cancer.

To better understand the function of miR-145 in TNBC, we examined the predicted targets of miR-145 and identified ARF6, a small GTPase known to regulate endocytic recycling and previously implicated in breast tumor invasion \((21)\). ARF6 mRNA 3'UTR contains five predicted miR-145-binding sites. Using a 3'UTR luciferase reporter, qRT-PCR, and Western blotting, we validated miR-145 targeting of the 3'UTR of ARF6 mRNA. Next, we found that ARF6 overexpression in MCF-7 cells promoted a more invasive phenotype as evidenced by Transwell invasion assays. We examined ARF6 function via 3D cell culture and found that overexpression of ARF6 results in loss of E-cadherin localization and disruption of cell–cell junctions. Finally, we examined ARF6 expression in a breast tumor tissue array and found that ARF6 levels were significantly higher in lymph node metastasis, suggesting a role of ARF6 in breast cancer metastasis. On the basis of our *in vitro* findings, it is important to next examine whether miR-145 and ARF6 can regulate TNBC metastasis in *vivo*.

Previously, miR-145 and lincRNA-RoR have been implicated in embryonic and adult stem cells \((10)\). These molecules may also be critical regulators of cancer stem cell biology, as it was previously reported that miR-145 is silenced in breast cancer stem cells. There is mounting evidence of a powerful connection between epithelial–mesenchymal transition and breast cancer stem cell \((12)\). Here, we have demonstrated a connection between miR-145 and invasion/metastasis that involves altered cell morphology and loss of epithelial adherens junction protein E-cadherin. In future studies, it will be interesting to test whether miR-145 and lincRNA-RoR play important roles in regulating the cancer stem cell phenotype in TNBC, which has previously been shown to play a critical role in drug resistance and metastasis.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: G. Eades, Q. Zhou

Development of methodology: Y. Zhang, Y. Yao

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): B. Wolfson, Y. Zhang, Y. Yao

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): Y. Zhang, Y. Yao

Writing, review, and/or revision of the manuscript: G. Eades, Q. Zhou

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): Q. Li, Q. Zhou

Study supervision: Q. Zhou

Grant Support

This work was supported by NCI F31 CA183522 (to G. Eades) and by grants from ACS, and the NCI R01 (to Q. Zhou). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked *advertisement* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 7, 2014; revised August 11, 2014; accepted September 12, 2014; published OnlineFirst September 24, 2014.

References

Molecular Cancer Research

lincRNA-RoR and miR-145 Regulate Invasion in Triple-Negative Breast Cancer via Targeting ARF6

Gabriel Eades, Benjamin Wolfson, Yongshu Zhang, et al.

Mol Cancer Res Published OnlineFirst September 24, 2014.

Updated version Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-14-0251

Supplementary Material Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2014/09/25/1541-7786.MCR-14-0251.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.