Acquisition of Resistance of Pancreatic Cancer Cells to 2-Methoxyestradiol Is Associated with the Upregulation of Manganese Superoxide Dismutase

Jianhong Zhou and Yuchun Du

Abstract

Acquired resistance of cancer cells to anticancer drugs or ionizing radiation (IR) is one of the major obstacles in cancer treatment. Pancreatic cancer is an exceptional aggressive cancer, and acquired drug resistance in this cancer is common. Reactive oxygen species (ROS) play an essential role in cell apoptosis, which is a key mechanism by which radio- or chemotherapy induce cell killing. Mitochondria are the major source of ROS in cells. Thus, alterations in the expression of mitochondrial proteins, involved in ROS production or scavenging, may be closely linked to the resistance of cancer cells to radio- or chemotherapy. In the present study, we generated a stable cell line by exposing pancreatic cancer cells to increasing concentrations of ROS-inducing, anticancer compound 2-methoxyestradiol (2-ME) over a 3-month period. The resulting cell line showed strong resistance to 2-ME and contained an elevated level of ROS. We then used a comparative proteomics method to profile the differential expression of mitochondrial proteins between the parental and the resistant cells. One protein identified to be upregulated in the resistant cells was manganese superoxide dismutase (SOD2), a mitochondrial protein that converts superoxide radicals to hydrogen peroxides. Silencing of SOD2 resensitized the resistant cells to 2-ME, and overexpression of SOD2 led the parental cells to 2-ME resistance. In addition, the 2-ME–resistant cells also showed resistance to IR. Our results suggest that upregulation of SOD2 expression is an important mechanism by which pancreatic cancer cells acquire resistance to ROS-inducing, anticancer drugs, and potentially also to IR. Mol Cancer Res; 10(6); 1–10. ©2012 AACR.

Introduction

Pancreatic cancer is an exceptionally aggressive cancer, with the 5-year survival rate of approximately 2%, and median survival after diagnosis of less than 6 months (1). Intrinsic and acquired resistance of most patients with pancreatic cancer to radio- and chemotherapy is one of the major challenges in pancreatic cancer treatment. Currently, less than 10% of patients with pancreatic cancer benefit from radiation therapy, and 20% of patients from chemotherapy (2, 3). Because of lack or poor therapeutic responses of pancreatic cancer to therapies, the long-term survival rate for patients with organ-confined pancreatic cancer is only 20%, much lower than those for many other major types of cancers (4). Thus, understanding the mechanisms underlying the resistance of pancreatic cancer to radio- and chemotherapy and developing novel treatment strategies directed against this devastating disease are greatly needed.
within a eukaryote is used in mitochondrial respiration, and about 1% to 2% of the overall oxygen consumption is used for producing ROS (12). ROS formation in mitochondria is mainly due to electron leakage naturally occurring in complexes I and III of the respiratory chain located in the mitochondrial membrane (12). Incomplete oxygen reduction within the mitochondrial respiration chain leads to the formation of the first molecule of ROS, superoxide radicals (O$_2^-$). The superoxide radicals are then dismantled to produce hydrogen peroxides (H$_2$O$_2$) by mitochondrial manganese superoxide dismutase (SOD2), and the produced H$_2$O$_2$ is further converted into water through glutathione peroxidase (GPx) and other molecules (12). The relatively long-lived H$_2$O$_2$ can pass mitochondrial membrane by diffusion into the cytosol and nucleus to activate a range of signaling pathways, including mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways (6, 13).

2-Methoxyestradiol (2-ME) is a natural physiologic metabolite of estrogen, 17β-estradiol. A variety of cancer cells, including pancreatic cancer cells, were shown to be sensitive to 2-ME (14–16). 2-ME specifically affects cancer cells with no effects on normal cells (17), and its anticancer effects are largely linked to its ability to trigger mitochondrial-dependent apoptosis through inducing accumulation of cellular ROS (15, 18). To explore the molecular mechanism underlying the acquired resistance of pancreatic cancer cells to ROS-inducing anticancer drugs, we generated a stable cell line by exposing pancreatic cancer cells to increasing concentrations of 2-ME over a period of 3 months. The resulting cell line showed strong resistance to 2-ME and contained an elevated level of ROS. We then used a 2-dimensional gel electrophoresis (2-DE)–based proteomics method to identify the mitochondrial proteins that were differentially expressed between the parental and the resistant cells. One protein identified was SOD2. Functional analysis revealed that SOD2 played a critical role in protecting the 2-ME–resistant cells from the excessive oxidative stress, thus conferring resistance to ROS-induced apoptosis to the cells.

Materials and Methods

Cell culture and generation of stable cells with acquired resistance to 2-ME

The pancreatic cancer cells that we used to generate stable cells were MIA PaCa-2, which is an undifferentiated, primary pancreatic cancer cell line sensitive to 2-ME (19, 20). The MIA PaCa-2 cells were routinely maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% FBS and 1% penicillin and streptomycin. 2-ME–resistant stable cells were generated by continuously exposing the MIA PaCa-2 cells to stepwise increasing 2-ME concentrations in the range of 0.5 to 2.5 μmol/L over a period of 3 months. After the cells adapted to one 2-ME concentration, typically requiring 2 to 3 weeks, exposure to 2-ME was increased by 0.5 μmol/L. The process was repeated until 2-ME concentration reached 2.5 μmol/L. Beyond 2.5 μmol/L, no stable cells were successfully recovered.

ROS measurement

Cellular ROS concentrations were measured with a flow cytometer (BD Biosciences) after incubating cells with a fluorescence probe 2’,7’-dichlorodihydrofluorescein-diacetate (DCFH-DA; Invitrogen) as described by Gottlieb and colleagues (21). The parental and the resistant cells were cultured with 2.5 μmol/L 2-ME for 1 week, then harvested, washed with cold PBS, and incubated with 10 μmol/L DCFH-DA for 30 minutes. Propidium iodide was added to each sample immediately before flow cytometric analysis to differentiate dead and live cells. Fluorescence was analyzed only in live cells. The cells were also incubated with propidium iodide alone, and the mean fluorescence of live cells of the single-stained cells was subtracted from the live cells of the double-stained cells. For polyethylene glycol (PEG)-catalase or PEG-SOD treatments (22), the parental and the resistant cells were pretreated with control media or media containing 100 U/mL PEG-catalase or 100 U/mL PEG-SOD (Sigma) for 24 hours, followed by an incubation with 2.5 μmol/L 2-ME in the media for an additional 16 hours. The cells were then washed and incubated with 5 μmol/L CM-H2DCFDA (Invitrogen) for 20 minutes at 37°C. After this, the cells were harvested, washed twice with cold PBS, and analyzed by flow cytometry as described above.

Cell viability assay and clonogenic survival assay

Cells were cultured with the indicated concentrations of 2-ME for 48 hours and then used for a viability assay, which was conducted with a CellTiter-Glo Luminiscence Cell Viability Assay Kit (Promega). Luminescence was measured with a SPECTRAMax GEMINI XS fluorescence microplate reader (Molecular Devices). The clonogenic survival assay was conducted according to Franken and colleagues (23). Briefly, the parental and the resistant cells were plated in the 60-mm dishes in DMEM and cultured for 6 hours. 2-ME was then added to each plate resulting in a final 2-ME concentration of 0, 0.25, 0.5, 1.0, or 1.5 μmol/L in the culture medium (or the cells were exposed to different doses of γ-ray). The cells were cultured for 21 days with a medium change every 4 days. Colonies with more than 50 cells were counted, and surviving fractions were normalized with plating efficiencies. Triplicate plates were used for each 2-ME concentration or irradiation dose.

Isolation of mitochondria

Mitochondria were purified from cells using differential centrifugation and nonlinear sucrose ultracentrifugation (Supplementary Fig. S1; refs. 24, 25).

2-DE

Three hundred micrograms of mitochondrial protein dissolved in a rehydration buffer was loaded onto a 17-cm ReadyStrip IPG strip (pH 3–10), which was in turn kept at room temperature overnight. Other procedures were conducted as described previously (26, 27).
Liquid chromatography/tandem mass spectrometry analysis and database search

The liquid chromatography/tandem mass spectrometry (LC/MS-MS) analysis was carried out using a LTQ-XL mass spectrometer (Thermo) in the Proteomic Facility at the University of Arkansas for Medical Sciences (Little Rock, AR). Proteins were in-gel digested with trypsin (Promega) overnight at 37°C, and the resulting peptides were dissolved in 20 μL 0.1% formic acid for LC/MS-MS analysis. Mascot (V2.2; Matrix Science) was used to search against the International Protein Index (IPI) human protein database (V3.68) using LC/MS-MS data as described (26, 27). The parameters for database searching were as follows: (i) 2.0-Da mass error tolerance for MS and 0.65-Da for MS-MS, (ii) a maximum of one missed cleavage, and (iii) variable modifications: acetylation at peptide N-terminus, phosphorylation on tyrosine/serine/threonine, and oxidation on methionine.

Overexpression and small hairpin RNA silencing of SOD2

For overexpression, the coding sequence of human SOD2 was cloned into the HindIII and XhoI sites of plasmid pcDNA3.1, and the resulting construct was transfected into the parental cells with calcium phosphate method. For silencing of SOD2, shSOD2 sequence (20) was annealed and cloned into the SalI and XhoI sites of a safety-modified retroviral vector pSuppressorRetro (Imgenex). Cotransfection of the retroviral construct with a packaging vector pCL-10A1 into 293T cells and the subsequent infection of the resistant cells with the resulting viral particles were conducted according to the manufacturer’s instructions (Imgenex). A negative control plasmid harboring a scrambled sequence that does not show significant homology to human gene sequences from the same company was transfected and infected in the same way as described above. For both overexpression and small hairpin RNA (shRNA) silencing, stable cells were selected with 1 mg/mL G418, and SOD2-overexpressing clones or the clones with knockdown of SOD2 were screened using Western blotting with anti-SOD2 antibodies.

Western blotting

Western blotting was conducted as described previously (26, 27). Antibodies were purchased from the following sources: anti-SOD2, peroxiredoxin III (Ptx III) and actin from Santa Cruz Biotechnology, and anti-PARP from BD Pharmingen.

Measurements of SOD2 and GPx activities

The parental or resistant cells (~1.8 × 10^6) were washed with ice-cold PBS twice and harvested with a rubber policeman. The cells were lysed in 3 packed cell pellet volumes of 0.05 mol/L phosphate buffer, pH 7.8, by 3 cycles of sonication (Branson Digital Sonifier 450) on ice with a microtip at 15% power (10 × 0.5 s pulses in each cycle). After centrifugation at 10,000 × g for 15 minutes at 4°C, protein concentration in the supernatant was determined by a BCA Protein Assay Kit (Thermo Scientific). SOD2 activity was measured using a SOD Assay Kit-WST (Dojindo Molecular Technologies). The measurements were conducted according to manufacturer’s instructions with the following specifications: (i) the cell extract was incubated with 5 mmol/L potassium cyanide for 40 minutes at room temperature to inactivate Cu/Zn-SOD activities; (ii) 25 to 40 μg protein was used in each reaction; (iii) the standard curve was generated using serial dilutions of SOD from bovine erythrocytes, and one unit of SOD is defined as the amount of enzyme that inhibits the rate of cytochrome c reduction by 50% at pH 7.8 and 25°C (Sigma). Enzymatic activity was expressed as units per mg of protein.

GPx activity was measured by monitoring the oxidation of NADPH with a UV spectrophotometer at 340 nm (28). The reaction mixture contained 50 mmol/L Tris-HCl, pH 8.0, 0.5 mmol/L EDTA, 0.25 mmol/L NADPH, 2.1 mmol/L reduced glutathione, 0.5 U glutathione reductase (Sigma), and 0.5 to 1 mg cell extract prepared as described above. The reaction was initiated by adding 300 μmol/L t-butyl hydroperoxide, and the final volume of the reaction mixture was 1 mL. The enzyme-catalyzed oxidation of NADPH was monitored for 5 minutes at 25°C.

Statistical analysis

P values were calculated by one-way ANOVA (PSI-PLOT).

Results

Generation of stable cell line with acquired resistance to ROS-inducing compound 2-ME

To eliminate the complications caused by genetic background variations, we generated a pancreatic cancer isogenic stable cell line that differs in sensitivity to ROS-inducing compound 2-ME. By exposing the pancreatic cancer MIA PaCa-2 cells to increasing concentrations of 2-ME (0.5–2.5 μmol/L) over a 3-month period, we generated an isogenic cell line with acquired resistance to 2-ME, designated as MIA PaCa-2R. As shown in Fig. 1A, the resistant MIA PaCa-2R cells showed strong resistance to 2-ME–mediated cell killing compared with the parental MIA PaCa-2 cells. We also used Western blotting to detect the cleavage of PARP to monitor cell apoptosis. As shown in Fig. 1B, the MIA PaCa-2R cells were more resistant to the 2-ME–mediated apoptosis than the parental cells. Apoptosis is not the only form of cell death in most tumors, and clonogenic survival assay is widely regarded as the “gold standard” cellular sensitivity assay due to its ability to measure long-term cell survival and all modes of cell death. We conducted clonogenic survival assay on the parental and the resistant cells. As shown in Fig. 1C, the MIA PaCa-2R cells showed markedly enhanced clonogenic survival over the parental cells after the cells were exposed to increasing concentrations of 2-ME.

The resistant cells contain a higher level of cellular ROS than the parental cells

To examine whether ROS were involved in the resistance of the MIA PaCa-2R cells to 2-ME–mediated cell killing and...
apoptosis, we measured cellular ROS levels with flow cytometry using a fluorescent probe DCFH-DA (21). In this analysis, once the cell-permeable fluorescent probe DCFH-DA is in the cells, it is cleaved by cellular esterase into its nonfluorescent and nonmembrane-permeable form, DCFH, and thus is trapped in the cells. The DCFH is then oxidized by cellular oxidants into its fluorescent form, DCF. After incubating cells with DCFH-DA, it was shown that the fluorescence intensity in the MIA PaCa-2R cells was almost 3-fold of that in the MIA PaCa-2 cells (Fig. 2A). To make sure the DCF fluorescence intensity represented the ROS levels in cells, we incubated cells with cell-permeable PEG-catalase or PEG-SOD to examine whether they could inhibit the fluorescence signal intensity. The results showed that pretreatments of both the parental and resistant cells with PEG-catalase or PEG-SOD significantly inhibited the DCF fluorescent signals (Fig. 2B and C; for uncharacterized reasons, PEG-catalase pretreatments resulted in more pronounced decrease in fluorescence signal intensity in the parental cells than in the resistant cells), suggesting that DCF fluorescence signal intensities we measured represented the ROS levels in the cells. In short, results in this section suggest that cellular ROS levels were significantly different between the parental and resistant cells, and cellular ROS may be closely related to the acquired resistance of the MIA PaCa-2R cells to 2-ME.

Isolation of mitochondria from cells

For conducting comparative proteomic analysis using purified mitochondria as starting materials, we used differential centrifugation and nonlinear sucrose ultracentrifugation to purify mitochondria from the MIA PaCa-2 and MIA PaCa-2R cells (24, 25). Western blot analysis with antibodies against marker proteins showed that the purified mitochondria were essentially free of cytosolic and nuclear contaminations but contained endoplasmic reticulum proteins (Supplementary Fig. S1), which are usually difficult to remove using differential centrifugation (24).

SOD2 is upregulated in the resistant MIA PaCa-2R cells

We then used 2-DE to profile protein expression between the MIA PaCa-2 cells and MIA PaCa-2R cells using the purified mitochondria as starting materials. Of more than 650 protein spots resolved, multiple protein spots showed at least a 50% difference in the normalized volume between the MIA PaCa-2 cells and MIA PaCa-2R cells. LC/MS-MS analysis and database search revealed that one protein that showed approximately a 2-fold increase in the normalized volume in the MIA PaCa-2R gel over the counterpart in parental cell gel was SOD2 (Fig. 3A). SOD2 is the mitochondrial enzyme that converts superoxide (\(\text{O}_2^-\)) into \(\text{H}_2\text{O}_2\), which is further eliminated by GPx and other molecules (12). Increases of SOD2 expression have been detected in primary cancer tissues of different types of cancers (14, 29, 30). Because of the critical roles of SOD2 in ROS metabolism in normal and cancer cells, we selected this enzyme for further analysis. First, we examined the expression of SOD2 by Western blotting with anti-SOD2 antibodies and confirmed that the expression of SOD2 in the MIA PaCa-2R cells was indeed upregulated (Fig. 3B). To examine...
whether the increased expression would lead to an enhanced SOD2 enzymatic activity in the resistant cells, we measured the catalytic activity of SOD2. Consistent with the expression data, SOD2 enzymatic activity in the MIA PaCa-2R cells was also approximately 2-fold of that in the parental cells (Fig. 3C).

Ectopic overexpression of SOD2 decreases the sensitivity of MIA PaCa-2 cells to 2-ME

To examine whether the upregulated SOD2 protected the MIA PaCa-2R cells from 2-ME–mediated cell killing and apoptosis (Fig. 1), we generated a cell line that stably overexpresses SOD2 in MIA PaCa-2 cells (Fig. 4A). Enzymatic activity measurements confirmed that cells overexpressing SOD2 contained significantly ($P < 0.001$) higher SOD2 activity than the control cells (Fig. 4B). Western blot analysis of PARP cleavage showed that overexpression of SOD2 led MIA PaCa-2 cells to become resistant to 2-ME–mediated apoptosis (Fig. 4C). Consistent with this, cell viability assay showed that overexpression of SOD2 caused the parental cells to be significantly less sensitive to the 2-ME–mediated cell killing as compared with the control cells (Fig. 4D; compare "SOD2over" with control; $P < 0.001$). However, overexpression of SOD2 alone did not promote the 2-ME resistance of the MIA PaCa-2 cells to the level of the resistance of the MIA PaCa-2R cells (Fig. 4D; compare "SOD2over" with MIA PaCa-2R), suggesting that other...
factors also contributed to the resistance of MIA PaCa-2R cells to 2-ME. We also conducted clonogenic survival assay to compare long-term cell survival between the "SOD2over" cells and the parental cells. The results showed that overexpression of SOD2 enhanced the long-term clonogenic survival of the "SOD2over" cells under different concentrations of 2-ME compared with the parental cells (Fig. 4E). Taken together, results in this section suggest that the upregulated SOD2 in the MIA PaCa-2R cells plays a critical role in conferring the resistance of the MIA PaCa-2R cells to the 2-ME−mediated cell killing and apoptosis.

Suppression of SOD2 expression moderately resensitizes MIA PaCa-2R cells to 2-ME

To ensure that SOD2 is indeed involved in the acquired resistance to 2-ME, we selectively suppressed SOD2 expression in MIA PaCa-2R cells with retrovirus-mediated shRNA (Fig. 5A). SOD2 enzymatic activity assay confirmed that the stable cells with SOD2 being silenced contained significantly lower activity of SOD2 compared with the resistant cells (Fig. 5B). Western blot analysis showed that silencing of the SOD2 expression resensitized the MIA PaCa-2R cells to 2-ME−mediated apoptosis (Fig. 5C). In agreement with this, suppression of SOD2 in the MIA PaCa-2R cells led to a moderate increase in sensitivity to 2-ME−mediated cell killing (Fig. 5D; compare "shSOD2" with MIA PaCa-2R; P = 0.0712). However, the suppression of SOD2 expression did not completely reverse the 2-ME−resistant phenotype of the MIA PaCa-2R cells (Fig. 5D; compare "shSOD2" with MIA PaCa-2). These results were consistent with the overexpression data (Fig. 4), and both sets of results imply that SOD2 plays an important role in the acquired resistance of pancreatic cancer cells to 2-ME but is not the sole factor responsible for the acquired resistance.

MIA PaCa-2R cells also show a tendency to have IR resistance

In addition to mediating drug-induced apoptosis and cell killing, ROS are also major components involved in IR-induced apoptosis and cell killing (10). To test whether the sensitivity of pancreatic cells to 2-ME is linked to their sensitivity to IR, we first treated the MIA PaCa-2 and MIA PaCa-2R cells with 5 Gy of γ-radiation and measured cell apoptosis and viability. The results showed the 2-ME−resistant MIA PaCa-2R cells were also more resistant to IR-induced apoptosis (Fig. 6A) and showed moderately higher cell viability after the exposure (Fig. 6B; P = 0.0975). We then conducted a clonogenic survival assay to compare the long-term survival of the 2 types of cells after exposing the cells to different doses of IR. As shown in Fig. 6C, the resistant MIA PaCa-2R cells showed significantly (P < 0.01) enhanced long-term clonogenic survival
over the parental cells after the cells were exposed to IR of more than 3 Gy. These results suggest that the acquired 2-ME resistance of pancreatic cancer cells is not restricted to ROS-inducing compound 2-ME, but also linked to radioresistance of the cells. The observed radioresistance of the MIA PaCa-2R cells might be related to the increased expression of SOD2 in the resistant cells, as overexpression of SOD2 has been shown to result in IR resistance in different types of cells (31).

The expression or activity of important proteins involved in detoxifying H2O2 in mitochondria is not enhanced

H2O2, the product of SOD2, is also toxic to cells. Multiple factors are known to be involved in converting H2O2 into water in mammalian cells, including catalase, GPx, and peroxiredoxin (32). Catalase, a major H2O2 detoxifying enzyme in cells, is mainly located in peroxisomes (33) and has not been found in the mitochondria of most tissues except for heart tissue (34, 35). Even in heart mitochondria, the contribution of catalase to H2O2 detoxification is negligible (36). In mitochondria, GPx and a mitochondrion-specific peroxiredoxin, Prx III, seem to play a major role in removing H2O2 (12, 36, 37). To examine whether these enzymes are involved in the 2-ME resistance of the MIA PaCa-2R cells, we compared the expression of Prx III and the activity of GPx between the parental cells and the resistant cells. The expression of Prx III was similar between the parental and the resistant cells (Fig. 7A). In contrast to the changes in SOD2 expression and activity (Fig. 1), the catalytic activity of GPx in the resistant cells was significantly lower than that in the parental cells (Fig. 7B). A decrease in GPx catalytic activity could result in increased sensitivity of cells to ROS (instead of enhanced resistance to ROS). These results suggest that Prx III and GPx may not positively contribute to the increased 2-ME resistance of the MIA PaCa-2R cells.

Discussion

Through exposure of pancreatic cancer MIA PaCa-2 cells to increasing concentrations of ROS-inducing anticancer compound 2-ME over a 3-month period, we generated a cell line, MIA PaCa-2R, that was strongly resistant to 2-ME (Fig. 1). The ROS level in the MIA PaCa-2R cells was almost 3-fold of that in the parental cells (Fig. 2). Comparative proteomic analysis revealed that the expression of SOD2, a key antioxidant enzyme in mitochondria, was upregulated (Fig. 3). Functional analyses of SOD2 suggest that SOD2 plays a critical role in the acquired resistance of the MIA PaCa-2R cells to 2-ME (Figs. 4 and 5) and potentially also to IR (Fig. 6).

Compared with other major types of cancers, one unique feature of pancreatic cancer is that approximately 90% of pancreatic cancers contain \(Kras \) mutations (38), the highest in all cancers. Kras is involved in the G-protein signal transduction pathway, modulating cellular proliferation and differentiation. Mutations of \(Kras \) result in constitutive activation of the MAPK and PI3K/AKT signal transduction pathways and, consequently, unregulated proliferation and impaired differentiation (39), which lead to increased generation of ROS (7). The elevated levels of ROS in turn can further activate MAPK and PI3K/AKT pathways (6, 13), potentially forming a positive feedback loop. The activating mutations of \(Kras \) usually occur at a very early stage of pancreatic cancer development, suggesting that \(Kras \) oncoproteins play a key role in the pancreatic cancer pathogenesis (38). Tumor cells harboring activated \(Ras \) mutation are...
usually resistant to chemo- and radiotherapy (40). In line with this notion, transformation of human ovarian epithelial cells with mutated \(\text{Ras} \) increases the threshold of ROS tolerance (hence the resistance to the oxidative agent–mediated cell killing and apoptosis) by upregulating the overall antioxidant capacity of cells (41). Furthermore, a recent study showed that the IR resistance of cancer stem cells was associated with low levels of ROS resulting from enhanced ROS defense in the cells (42). All these lines of evidence suggest that ROS may play a critical role in the exceptional intrinsic and acquired resistance of pancreatic cancer cells to IR and ROS-inducing chemodrugs. SOD2 plays a vital role in ROS metabolism in that it converts highly toxic superoxide \((O_{2}^-) \) into less toxic hydrogen peroxides \((H_{2}O_{2}) \) in the mitochondria, a site that is vulnerable to ROS attack and important to cell apoptosis. SOD2-knockout mice die within 10 days after birth (43). Consistent with its essential functions, enforced expression of SOD2 suppresses the malignant phenotypes of several types of human cancer cells including pancreatic cancer, suggesting that SOD2 may function as a tumor suppressor (19, 44, 45). However, in the present study, we found that SOD2 expression was upregulated instead of being downregulated in the resistant MIA PaCa-2R cells (Fig. 3). This contradiction suggests that SOD2 must function as a tumor suppressor different from most other conventional tumor suppressors, which are usually inhibited or lost in malignant cancer cells (39). Because the resistant MIA PaCa-2R cells contain high levels of ROS and are thus under excessive oxidative stress, the cells must have evolved a molecular mechanism to defend against the excessive stress for survival (i.e., to evade the ROS-induced apoptosis). Upregulation of SOD2 expression must

![Figure 6](image_url)

Figure 6. The 2-ME-resistant MIA PaCa-2R cells are also moderately resistant to \(\gamma \)-ray–mediated apoptosis and cell killing. A and B, the MIA PaCa-2 cells and the MIA PaCa-2R cells were treated with 5 Gy of \(\gamma \)-ray, followed by a recovery culture at 37°C for 48 hours. The cells were then harvested for Western blotting with anti-PARP antibodies (A) and cell viability assay (B). In Western blotting, equal amounts of total protein were loaded in each lane (40 μg/lane), and β-actin was used as a loading control. C, clonogenic survival of the parental and the resistant cells. The parental and the resistant cells were treated with the indicated doses of \(\gamma \)-ray and then cultured for 21 days. The colonies with more than 50 cells were counted for calculation of cell survival. Values in B and C are the mean ± SE of 3 separate sample preparations. The \(P \) value in (B) was 0.0975, and the \(P \) value at each dose >3 Gy in (C) was < 0.01.

![Figure 7](image_url)

Figure 7. The expression or activity of important proteins involved in detoxifying \(H_{2}O_{2} \) in the mitochondria. A, the expression of Pnx III in the parental and the resistant cells. Equal amounts of total protein were loaded in each lane (40 μg/lane), and β-actin was used as a loading control. B, the activity of GPx in the parental and the resistant cells. Values are the mean ± SE of 3 separate sample preparations. * \(*, \) statistical significance of \(P < 0.05. \)
SOD2 and Acquired Resistance of Pancreatic Cancer to ROS

be one of those molecular mechanisms evolved in the MIA PaCa-2R cells. From this perspective, it is logical to speculate that the increased expression of SOD2 in the MIA PaCa-2R cells is an adaptive response of the cells to the excessive oxidative cellular environment, which can be reflected by the higher levels of ROS in the cells (Fig. 2). Because IR and many anticancer drugs kill cancer cells largely through inducing ROS (6, 9, 10), upregulation of SOD2 is likely to be a common molecular mechanism underlying acquired radio- or chemoresistance in cancer cells. This may be particularly true for those types of cancers that harbor a mutated Ras.

It has been well established that 2-ME induces cellular ROS accumulation (15, 18), and ROS triggers the expression of SOD2 (29, 46). Concomitantly, ROS have also been shown to activate transcription factor NF-kB, which in turn controls the expression of SOD2 (47, 48). Thus, the increased expression of SOD2 in the MIA PaCa-2R could be a result of NF-kB activation induced by the markedly elevated ROS levels in the resistant cells (Fig. 2). In addition to NF-kB, the promoter of SOD2 also contains binding site(s) for transcription factor AP-1 (49). Furthermore, mutations or methylations of the SOD2 promoter sequence were also reported to affect the expression of SOD2 in cancer cells (20, 50). These results suggest that multiple factors, including NF-kB, AP-1, promoter mutations, and methylations, may function independently or in combination to regulate the expression of SOD2 in different tissues or under different environments. Noticeably, SOD2 expression in primary pancreatic cancer cells (including MIA PaCa-2) is repressed (19, 20). Further investigations on how the SOD2 expression is derepressed during the development of acquired drug resistance may provide valuable information on designing novel therapeutic strategies to re sensitize drug-resistant pancreatic cancer cells to radio- and chemotherapy.

2-ME has been shown to trigger O$_2^-$ generation in cells via the mitochondrial electron transport chain (18). Interestingly, in the present study, we found that the enzymatic activity of GPx, a key enzyme in detoxifying H$_2$O$_2$ in the mitochondria (12, 36), in the resistant cells was significantly (P < 0.05) decreased compared with the parental cells (Fig. 7B). The decreased GPx could potentially contribute to the increased ROS levels in the MIA PaCa-2R cells (Fig. 2). Future studies on examining the relationship between the reduced activity of GPx and the increased ROS level in the MIA PaCa-2R cells may provide new information on how cellular ROS is built up when cancer cells are exposed to ROS-inducing compounds such as 2-ME.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: J. Zhou, Y. Du
Development of methodology: J. Zhou, Y. Du
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J. Zhou, Y. Du
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J. Zhou, Y. Du
Writing, review, and/or revision of the manuscript: Y. Du
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): Y. Du
Study supervision: Y. Du

Grant Support

This work was supported by NIH grants 1R03CA135549-01A1 and 1R15GM087671-01, and a grant from the Arkansas Biosciences Institute (to Y. Du). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 9, 2011; revised April 21, 2012; accepted April 23, 2012; published OnlineFirst April 30, 2012.

References

13. Gupta A, Rosenberger SF, Bowden GT. Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis 1999;20:2063–73.

22. Zhou and Du

Acquisition of Resistance of Pancreatic Cancer Cells to 2-Methoxyestradiol Is Associated with the Upregulation of Manganese Superoxide Dismutase

Jianhong Zhou and Yuchun Du

Mol Cancer Res Published OnlineFirst April 30, 2012.

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-11-0378

Supplementary Material
Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2012/04/30/1541-7786.MCR-11-0378.DC1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.