Blockade of Fatty Acid Synthase Induces Ubiquitination and Degradation of Phosphoinositide-3-Kinase Signaling Proteins in Ovarian Cancer

Katharina Tomek1, Renate Wagner1, Franz Varga2, Christian F. Singer3, Heidrun Karlic4, and Thomas W. Grunt1,4

Abstract

Aberrations within the phosphoinositide-3-kinase (PI3K) pathway occur in greater than 45% of ovarian carcinomas. The PI3K cascade transmits signals from ErbB receptors downstream to S6 and 4EBP1, which are involved in protein biosynthesis. Many ovarian carcinomas reveal hyperactivation of ErbB1 (epidermal growth factor receptor) or ErbB2 (HER2/neu). Unfortunately, the benefit of anti-ErbB drugs is yet rather limited in ovarian carcinomas. Thus, novel targeting strategies are needed for ovarian carcinomas. The lipogenic enzyme fatty acid synthase (FASN) is overexpressed in approximately 80% of ovarian carcinomas. It stimulates cell growth and signifies poor prognosis. FASN inhibition impedes (ErbB) membrane receptor signaling and sensitizes cells against anti-ErbB drugs. Here, we show that the FASN inhibitor C75 and FASN-targeting siRNAs abrogate growth, induce apoptosis, and downregulate phosphorylation/expression of the PI3K effectors AKT, mTOR, p70S6K, S6, and 4EBP1. In contrast, FASN inhibition impairs expression but only weakly affects phosphorylation of ERK1/2 mitogen-activated protein kinases in ovarian carcinoma cells. Cycloheximide-mediated blockade of protein translation reveals that C75- or FASN siRNA–induced shutdown of FASN accelerates decomposition of signaling proteins. This effect is caused by C75- or FASN siRNA–dependent stimulation of ubiquitination followed by lysosomal-autophagosomal proteolysis. In contrast, PI3K inhibitor LY294002 blocks phosphorylation but does not reduce expression/stability of PI3K effectors. Forced expression of hyperactive (HA) AKT1, unlike HA-MEK1, impairs the growth-inhibitory action of C75. We provide first evidence that the anticancer action of FASN inhibitors is at least partially mediated by drug-dependent proteolysis of PI3K effectors. FASN is a promising cancer target, whose inhibition not only abrogates lipogenesis, which is indispensable for cancer growth, but also downregulates oncogenic PI3K signaling.

Introduction

The phosphoinositide-3-kinase (PI3K) signaling cascade controls many cellular functions including proliferation, differentiation, tumorigenesis, angiogenesis, autophagy, and apoptosis. A high proportion of ovarian carcinomas harbor molecular aberrations within the PI3K system including, for instance, PI3K itself, AKT, mTOR, and p70S6K (1, 2). The core route of the pathway from PI3K to AKT and mTOR diverges at mTOR (3), which activates either p70S6K and ribosomal protein S6 or the eukaryotic translation initiation factor 4E (eIF4E) inhibitor–binding protein 1 (4EBP1). The S6 protein is a component of the 40S ribosomal subunit, which is required for the synthesis of polypeptides at the ribosome. 4EBP1, on the other hand, modulates the function of eIF4E, which is involved in cap-dependent translation of growth-promoting genes. Thus, both S6 and 4EBP1 are involved in protein synthesis (4).

In addition, the PI3K system is well known to transmit oncogenic signals derived from membrane receptor tyrosine kinases, such as ErbB1 (epidermal growth factor receptor) or ErbB2 (HER2/neu; ref. 5). Notably, both ErbB1 and ErbB2 have been shown to be hyperactivated in 55% and 35% of ovarian carcinomas, respectively (6–9). This would suggest that blockade of ErbB1 and ErbB2 would be a promising strategy for treatment of ovarian carcinomas. However, unfortunately, clinical studies yet reveal that ErbB1- or ErbB2-inhibitory drugs are largely inefficient in ovarian...
carcinomas (10). Definitive molecular explanations for these failures are still missing. Therefore, novel molecular targeting strategies for the treatment of ovarian carcinomas are urgently needed.

Fatty acid synthase (FASN), the enzyme responsible for de novo synthesis of lipids from sugars, is overexpressed in up to 80% of ovarian carcinomas and signifies unfavorable clinical outcome (11, 12). FASN supports the formation of membrane-anchored lipid rafts. These lipid rafts accommodate growth factor receptors, including ErbB family proteins, and facilitate receptor signaling (13). Thus, FASN is associated with oncogenic ErbB signaling. Most importantly, inhibition of FASN delays disease progression of human ovarian carcinomas (14). Recently, we reported that the FASN inhibitor C75 induces growth arrest in ovarian carcinoma cells, downregulates ErbB1 and ErbB2, and sensitizes the cells against ErbB blocking drugs (15). Here, we show that C75 affects ovarian carcinoma cell growth by attenuating PI3K cascade molecules rather than by dephosphorylation of these proteins. In contrast, the PI3K inhibitor LY294002 blocks phosphorylation but does not stimulate degradation of PI3K and its effector proteins. Therefore, targeting FASN not only abrogates lipogenesis in cancer cells but also efficiently downregulates oncogenic PI3K signaling.

Materials and Methods

Cell culture and drugs

A2780 (kind gift from M. Krainer, Medical University Vienna); OVCAR-3, SKOV-3 (American Type Culture Collection); and HEY (originally from R.N. Buick, University of Toronto, Toronto, Ontario, Canada) were maintained at 37°C, 5% CO2, and 95% humidity in RPMI-1640, α-MEM, or Dulbecco’s Modified Eagle’s Media, respectively, containing 10% fetal calf serum (FCS), 100 IU (µg)/mL penicillin–streptomycin, and 2 mM/L glutamine (Gibco). They were diluted once or twice weekly at a ratio of 1:10 to 1:15 and cultured for up to 20 passages. The cells were exposed for 48 hours to 0.2% DMSO (solvent), to 20 µg/mL C75. Adherent cells were trypsinized, pooled with nonadherent cells, and stained with 0.01% trypan blue. Cell viability was then determined by direct counting of the cells under the microscope. For each drug concentration, the viable (pale) and the nonviable (blue) cell subsets were related to the sum of both populations, which has arbitrarily been set at 100%. Results from triplicate determinations were given as mean ± SD.

Western blotting

Cells plated in media containing 5% FCS were treated with C75, LY294002, cycloheximide, or bortezomib, or with combinations of C75 with cycloheximide or with bortezomib. Proteins (20 µg/lane) were subjected to SDS-PAGE, blotted onto polyvinylidene difluoride membranes, and immunostained as described (16) using the following antibodies: anti-AKT, anti-phospho-AKT (Ser473), anti-mTOR,anti-phospho-mTOR (Ser2448), anti-p70S6K, anti-phosphop70S6K (Thr421/Ser424), anti-phosphop70S6K (Thr389), anti-S6 (clone 5G10), anti-phospho-S6 (Ser240/244), anti-4EBP1, anti-phospho-4EBP1 (Ser65), anti-MEK1/2, anti-ERK1/2, anti-phospho-ERK1/2 (Thr202/Tyr204), anti-caspase-3, anti-PARP-1, anti-Belin1, anti-Akt5 (clone D1G9), or anti-ubiquitin (clone P4D1); all from Cell Signaling Technology, and all at a dilution of 1:1,000, except anti-phospho-S6 (Ser240/244), which was used at 1:2,000, or anti-actin (I-19, Santa Cruz Biotechnology, at 1:1,000), or anti-LC3B (Genetex, at 1:2,000). Secondary antibodies were peroxidase-tagged donkey-anti-rabbit (Promega), donkey-anti-goat (Santa Cruz Biotechnology), or chicken-anti-mouse IgG (Santa Cruz Biotechnology) at the ratio of 1:15,000. Detection was by enhanced chemiluminescence.

Immunoprecipitation

SKOV-3 cells (6 × 10^5/60-mm dish) grown in media containing 5% FCS were treated for 48 hours with 20 µg/mL C75 and then processed for immunoprecipitation with anti-AKT or anti-actin using the Immunoprecipitation Kit (Protein G) from Roche Diagnostics. Sample preparation was done essentially as described in the manufacturer’s protocol. Briefly, proteins from cell lysates were precleared and were immunoprecipitated overnight at 4°C on a rocking platform using specific antibodies bound to Protein G agarose beads. Precipitated proteins were denatured (5 minutes, 95°C), separated from the beads, and then subjected to SDS-PAGE and Western blotting using anti-ubiquitin, anti-AKT, or anti-actin antibodies as described previously.

Proliferation assays

Cells were plated in 96-well plates. After adhesion, media with or without drugs were added. Cell numbers were estimated after indicated time periods using a formazan dye assay (Biomedica), and results from triplicate determinations were given as mean ± SD.

Cell viability assays

SKOV-3 cells grown in 35-mm dishes were exposed for 72 hours to 0 to 20 µg/mL C75. Adherent cells were trypsinized, pooled with nonadherent cells, and stained with 0.01% trypan blue. Cell viability was then determined by direct counting of the cells under the microscope. For each drug concentration, the viable (pale) and the nonviable (blue) cell subsets were related to the sum of both populations, which has arbitrarily been set at 100%. Results from triplicate determinations were given as mean ± SD.

Acridine orange staining

SKOV-3 cells, grown to subconfluence in 35-mm dishes, were exposed for 48 hours to 0.2% DMSO (solvent), to 20
µg/mL C75 alone, to 2 µmol/L bortezomib alone, or to C75 and bortezomib together. For detection of acidic vesicles such as late endosomes and lysosomes, the cells were stained for 20 minutes with acridine orange (Sigma, 1 µg/mL) and then subjected to fluorescent microscopy. Chloroquine (24 hours, 15 µmol/L) was used as a lysosomotropically positive control drug.

Transfection of siRNA and detection of cell number, and of protein expression, phosphorylation, and ubiquitination

A2780 was transiently transfected with 60 nmol/L FASN siRNAs and SKOV-3 with 75 nmol/L Beclin 1 (BECN1) or Atg5 siRNAs according to the manufacturer’s instructions (Dharmacon). Briefly, 3 × 10⁵ cells/35-mm dish were incubated in DharmaFECT 3 siRNA lipid transfection reagent either containing 60 or 75 nmol/L of siGENOME non-targeting siRNA #2 (D-001210-02-05) that targets firefly luciferase mRNA but does not interact with any known human mRNA sequence or containing a set of 4 siRNA species, each at a concentration of 15 or 18.75 nmol/L, that target distinct sequences of the human FASN, Beclin 1, or Atg5 mRNAs, respectively (ON-TARGETplus SMARTpool FASN, L-003954-00; ON-TARGETplus SMARTpool BECN1, L-010552-00; and ON-TARGETplus SMARTpool ATG5, L-004374-00). After 72 hours of culture at 37°C, 5% CO₂, and 95% humidity in RPMI-1640 or α-MEM containing 5% FCS and 2 mmol/L glutamine, untreated or C75-exposed (10 µg/mL, 72 hours) transfectants were subjected to a formazan dye cell proliferation assay (see above). Moreover, untreated transfectants were lysed and further processed for SDS-PAGE and Western blotting to detect protein expression, phosphorylation, and ubiquitination (see above). All data were obtained from unselected polyclonal transfected populations.

Transfection of cDNA constructs and detection of cell number, and of protein expression and phosphorylation

Human constitutively active (CA)-MEK1 lacking nuclear export signal domain and harboring activating amino acid substitutions at 2 phosphorylation sites (kindly provided by H. Kiyama, Osaka City University, Osaka, Japan) and murine CA-AKT1 carrying the myristoylated signal of Lck, which targets it to the membrane (kindly provided by D. Efremov, International Center for Genetic Engineering and Biotechnology, Rome, Italy) were transfected into SKOV-3 cells essentially as previously described (17). Specifically, pcDNA3 containing the gene for GFP was used as a negative control expression plasmid. For transient transfection, 5 × 10⁵ to 8 × 10⁵ SKOV-3 cells were plated in 6-well plates and allowed to attach. Then, 1 µg plasmid DNA diluted in Opti-MEM I (Invitrogen) containing Lipofectamine LTX (Invitrogen) was incubated for 30 minutes at room temperature to allow formation of Opti-MEM–DNA-LTX transfection complexes, added to cells, and left in cultures for 24 hours. Cells were then allowed to grow for another 24 hours in the absence of exogenous plasmid DNA. These transfected, polyclonal cell populations were not undergone any further clonal selection or enrichment but were either directly processed for Western blot analysis or were trypsinized and subjected to C75 treatment and cell growth assays as described above.

Statistical analyses

The Student t test for unpaired samples was applied to examine the significance in differences of protein expression/ubiquitination or of cell growth. Values of P < 0.05 were considered significant.

Results

The effects of the FASN blocking drug C75 and the PI3K inhibitor LY294002 on PI3K and MAPK signaling pathways

Western blots shown in Fig. 1 show that the FASN inhibitor C75 downregulates the expression of the PI3K downstream proteins AKT, mTOR, p70S6K, and 4EBP1 in A2780 ovarian carcinoma cells in a time-dependent manner. The protein levels are reduced after 2 or 4 hours of drug exposure and remain lowered during the observation period (72 hours). Thus, C75 induces silencing of the PI3K pathway. Interestingly, when we determined the relationship between the phosphorylated and the corresponding total protein bands, we found that C75 also inhibits the specific phosphorylation/activity of the PI3K signaling proteins. This was particularly striking for 4EBP1 (Fig. 1). In contrast, C75 decreases total and phosphorylated extracellular signal-regulated kinase (ERK) 1 and ERK2, the crucial signal effectors of the mitogen-activated protein kinase (MAPK) cascade, only slightly and only after prolonged periods of exposure (≥ 48 hours; Fig. 1).

The effects of the FASN inhibitor C75 on PI3K and MAPK signaling were then compared with those induced by the direct PI3K antagonist LY294002. LY294002 blocks specific phosphorylation/activity of PI3K downstream effectors, but unlike C75, it does not downregulate protein steady-state levels (Supplementary Fig. S1). Thus, our data indicate that C75 and LY294002 affect PI3K signaling by crucially different mechanisms of action. While C75 inhibits the PI3K pathway primarily by downregulation of effector protein expression, LY294002 directly targets phosphorylation/activity of these proteins but does not downregulate the protein expression levels. Dose–response experiments (not shown) revealed that C75 and LY294002 are equally efficient in growth inhibition at the concentrations used (7 µg/mL for C75 and 12 µg/mL for LY294002) and block A2780 cell growth completely (Supplementary Fig. S2).

C75-induced downregulation of PI3K and MAPK proteins is not mediated by eIF4E-dependent translational control

Unphosphorylated 4EBP1 associates with eIF4E. Thereby, 4EBP1 prevents eIF4E from binding to the eIF4F translation initiation complex and precludes eIF4F-dependent protein synthesis. Therefore, we speculated whether C75-mediated downregulation of PI3K and MAPK proteins...
Figure 1. A, inhibition of FASN by C75 downregulates the expression and phosphorylation of the PI3K downstream signaling proteins AKT, mTOR, p70S6K, and 4EBP1 in A2780 ovarian carcinoma cells. Cells were treated for the indicated times with vehicle (0.1% DMSO) or with 7 µg/mL C75 and subjected to Western blot analysis. One representative experiment. B, autoradiographs were quantified by scanning densitometry. Each protein and phospho(p)-protein band was normalized to β-actin. In addition, each p-protein band was also normalized to its corresponding total protein band. The resulting ratios (protein/actin, p-protein/actin, and p-protein/protein) represent measures for expression, phosphorylation, and specific phosphorylation/activity of that particular protein, respectively. All calculated ratios were related to the ratios obtained from vehicle-treated control samples, which have been arbitrarily set at 1.0 (horizontal dashed line). Mean ± SD, n = 3, Student t test: *, P < 0.05; **, P < 0.01; ***, P < 0.001 versus control.
might be caused by C75-dependent dephosphorylation of 4EBP1. However, 2 observations are against this idea. First, C75 suppresses AKT and p70S6K levels already after 2 hours of treatment, whereas dephosphorylation of 4EBP1 takes longer and requires at least 4 hours of exposure (Fig. 1). Second, LY294002 completely abrogates phosphorylation of 4EBP1 but does not downregulate PI3K and MAPK protein levels (Supplementary Fig. S1). Thus, these data suggest that PI3K and MAPK signaling proteins are not controlled by elf4F-dependent translational mechanisms in A2780 ovarian carcinoma cells.

C75 stimulates degradation of PI3K and MAPK signaling proteins

We then sought to determine whether the observed C75-mediated downregulation of PI3K and MAPK proteins might result from elevated protein degradation. To test this, A2780 cells were cotreated for 8 to 72 hours with C75 and with the translation inhibitor cycloheximide, which is known to block de novo protein synthesis. Cell proteins were extracted after lysis of the cells and subjected to Western blotting. Separated proteins were then analyzed for the expression of AKT, mTOR, p70S6K, 4EBP1, and ERK1/2. Interestingly, as shown in Fig. 2, C75 markedly accelerates and aggravates cycloheximide-enabled downregulation of each signaling protein tested. Consequently, the FASN inhibitor C75 markedly shortened the period required for cycloheximide to depress the steady-state levels of the PI3K and MAPK proteins to 50% of the original levels (half-lifes, IT50; Supplementary Table S1). Thus, inhibition of FASN silences the PI3K pathway mainly by reducing the stability of the downstream proteins rather than by direct dephosphorylation of these proteins.

C75 stimulates protein ubiquitination

Degradation of proteins is usually triggered by attachment of ubiquitin moieties to the client protein. Therefore, we hypothesized that the FASN inhibitor C75, but not the PI3K blocker LY294002, induces protein ubiquitination. To test this, A2780 cells were exposed to vehicle or drugs followed by Western blot analysis using a ubiquitin-specific antibody. Interestingly, inhibition of FASN causes a strong accumulation of ubiquitinated proteins, whereas direct blockade of PI3K does not promote protein ubiquitination (Fig. 3). Thus, C75, in contrast to LY294002, stimulates protein ubiquitination. This is in agreement with the data showing that C75, but not LY294002, decreases the steady-state levels of PI3K and MAPK signaling proteins (Fig. 1 and Supplementary Fig. S1). Therefore, C75-mediated degradation of signaling proteins is, at least in part, caused by elevated ubiquitination of these proteins.

Targeted knockdown of FASN by siRNA downregulates expression and phosphorylation of PI3K signaling proteins and stimulates protein ubiquitination

The FASN inhibitory drug C75 has been described as a malonyl-CoA analogue and is known to concomitantly activate fatty acid degradation by antagonizing the allosteric inhibitory effect of malonyl-CoA on carnitine palmitoyltransferase-I (CPT-I), the major rate-limiting enzyme for long-chain fatty acid oxidation (18–20). Therefore, we examined whether the observed C75-induced effects on PI3K downstream protein expression, phosphorylation, and stability were indeed because of blockade of FASN and not because of concurrent activation of CPT-I by transiently transfecting A2780 cells with a set of 4 different FASN-specific siRNAs. Notably, Bandyopadhyay and colleagues (21) recently reported that siRNA-mediated silencing of FASN expression, in contrast to pharmacologic inhibition of FASN by C75, counteracts CPT-I function. In our studies, FASN-targeted RNA interference efficiently abrogated FASN protein expression and blocked cell growth. Most importantly, concordant with C75, FASN siRNAs dramatically downregulated the expression and phosphorylation of the PI3K downstream effectors AKT, mTOR, S6, and 4EBP1. On the other hand, while reducing overall expression of the MAPK proteins ERK1 and ERK2, they did not markedly impede phosphorylation of these signaling proteins. Moreover, corresponding to C75, FASN siRNAs stimulated protein ubiquitination (Fig. 4).

C75 inhibits cell growth, survival, and expression/phosphorylation of PI3K signaling proteins and stimulates protein ubiquitination in all ovarian cancer cells studied

Using in vitro growth assays and Western blot analyses, we then examined the effects of C75 on cell growth, on apoptosis, on PI3K and MAPK signaling pathways, and on protein ubiquitination in a panel of additional ovarian carcinoma cell lines (OVCAR-3, SKOV-3, and HEY). Figure 5 shows that C75 effectively reduced the cell numbers (Fig. 5A), downregulated the expression and phosphorylation of AKT and S6, and stimulated protein ubiquitination in all these cell lines. Moreover, similar to A2780, C75 did also lower the ERK1 and ERK2 protein levels but had less effect on the phosphorylation of ERK1/2 in these cells (Fig. 5B and C). Immunoprecipitation for AKT followed by Western blotting against ubiquitinated proteins provided direct evidence that AKT indeed is a client protein of C75-induced ubiquitination in SKOV-3 cells (Fig. 5D). Cytotoxicity of C75 was shown by a relative, dose-dependent increase of trypan blue–stained (dead) cells (Fig. 5E) and by a decrease of caspase-3 and PARP-1, and a correlative occurrence of cleaved PARP-1 indicating apoptotic cell death (Fig. 5F).

C75 induces lysosomal protein degradation and autophagy

Unexpectedly, exposure of SKOV-3 cells to the proteasome inhibitor bortezomib, which abrogates proteasomal proteolysis (22), did not upregulate the steady-state levels of AKT and ERK1/2. Instead, when given alone, bortezomib downregulated AKT just as C75 did. Moreover, AKT expression was almost completely shut down, when both bortezomib and C75 were given together. In contrast, ERK1/2 expression was not significantly affected by bortezomib (Fig. 6A). This suggests (i) that neither AKT nor
ERK1/2 protein is subject to proteasomal degradation and (ii) that blockade of the proteasome by bortezomib activates an alternative proteolytic mechanism that causes downregulation of AKT. This pathway can further be stimulated by coexposure to C75. Consequently, we wondered whether C75 might stimulate lysosomal activity. To this end, SKOV-3 cells were stained with the fluorescent dye acridine orange, which labels acidic cell compartments such as lysosomes (23). Figure 6B shows that both bortezomib and C75 alone or together strongly stimulate the formation of lysosomes in SKOV-3 cells. Moreover, Western blot analysis revealed that LC3B-I was converted by C75 to the smaller form LC3B-II, which is a marker for autophagy (Fig. 6C). Interestingly, the lysosomotropic agent chloroquine blocks autophagic flux after generation of LC3B-II but before lysosome–autophagosome fusion. Consequently, chloroquine also causes marked cellular accumulation of lysosomes (Fig. 6B). We observed that inhibition of C75-mediated autophagy, either by coexposure of C75-treated SKOV-3 cells to the autophagic inhibitor chloroquine (Fig. 6D) or by siRNA knockdown of the key autophagic proteins Beclin 1 or Atg5, reverts C75-mediated growth inhibition (Fig. 6E and F). Thus, our data show that C75 stimulates lysosomal accumulation and formation of autophagosomes and that induction of autophagy essentially contributes to the toxic effects of C75.

Constitutively active AKT1 confers resistance against C75

To assess the potential roles of the PI3K and the MAPK signaling pathways in mediating the anticancer action of C75,
we transiently transfected constitutively active variants of AKT1 or MEK1 into SKOV-3 cells. Overexpression/hyper-
phosphorylation of transgenes or downstream effector mole-
cules (AKT, MEK1/2, and ERK1/2) was confirmed by
Western blot analysis of the unselected polyclonal transfectant
cell populations. Unlike wild-type SKOV-3 and GFP-trans-
fected control cells, AKT1 and MEK1 transfectants exhibited
an excess of the respective unphosphorylated and phosphor-
ylated signal effectors (Fig. 7A). These transfectants were used
to examine the relative contribution of MAPK and PI3K
signaling to the growth-inhibitory effect of C75. As shown
in Fig. 7B, C75 was found to strongly and equally suppress the
growth of GFP- and MEK1-transfected SKOV-3 cells,
whereas it was signiﬁcantly less ef
cient in blocking growth
of AKT1-transfected cells. Thus, our data show (i) that forced
expression of dominant active AKT1 and MEK1 ef
ciently stimulates PI3K and MAPK pathways in SKOV-3 cells,
respectively, and (ii) that PI3K/AKT, but not MAPK/MEK,
hyperactivity confers growth resistance of the cells against
C75. Thus, deactivation of the PI3K system seems to be
of crucial for C75 to exert its anticancer effect in these cells.

In summary, our data suggest that FASN activity is
of the cell cycle. The p110a catalytic subunit of PI3K
(PIK3CA) is one of the most frequently altered oncogenes
in cancer. Approximately 40% of ovarian tumors reveal
amplification, whereas only 7% reveal mutation of PIK3CA.
Conversely, the majority of breast cancers harbor mutations
in PIK3CA (40%), whereas only a few reveal PIK3CA
amplifications (9%; refs. 1, 24, 25). We and others have
recently shown that the PI3K signaling cascade interacts with
lipogenic pathways in cancer cells. In fact, FASN, the crucial
enzyme in de novo generation of long-chain fatty acids, is
overexpressed in approximately 80% of ovarian carcinomas
and is linked with the PI3K system in these tumors (13, 15).
Unfortunately, the mechanisms of FASN-mediated regula-
tion of PI3K signaling are still not fully characterized.
Experimental evidence suggests that multiple pathways are
involved (15). For instance, inhibition of FASN has been
found to abrogate incorporation of phospholipids, the end
products of FASN action, into cell membrane–anchored
lipid rafts, which accommodate growth factor receptors. It is,
therefore, thought that blockade of FASN indirectly
impedes the formation of membrane signaling complexes and
prohibits recruitment and activation of downstream
effectors such as PI3K (15). Moreover, persistent abrogation
of FASN-dependent lipid biosynthesis causes accumulation of
reactive oxygen species and FASN substrates as well as
depletion of FASN end products (15, 21). These stressful
conditions impose a durable insult on the malignant cells,
which consequently try to build up a compensatory unfolded
protein response that is part of the endoplasmic reticulum
stress response. These processes can lead to inhibition of
PI3K and to cell growth arrest (26, 27). Because of these
properties, FASN has been considered to represent a prom-
ising anticancer drug target. C75 is a derivative of the natural
FASN blocker cerulenin. It was developed as an anti-FASN
agent with a better chemical stability than cerulenin. Unfor-
fortunately, both compounds have been shown to affect

Discussion

The PI3K signaling pathway is crucial for survival and for
progression of ovarian carcinoma cells through the G_{1} phase
of the cell cycle. The p110a catalytic subunit of PI3K
(PIK3CA) is one of the most frequently altered oncogenes

Figure 3. Inhibition of FASN elevates protein ubiquitination in A2780 ovarian carcinoma cells. A, cells were treated for the indicated times (8, 24, 48,
and 72 hours) with vehicle (0.1% DMSO), with 7 µg/mL C75, or with 12 µg/mL LY294002. Whole-cell lysates were subjected to SDS-PAGE followed
by Western blot analysis using antibodies specific for ubiquitin or β-actin. One representative experiment. B, in each lane, ubiquitinated proteins
and the corresponding β-actin band were quantified by scanning densitometry. The obtained integral optical density values for the ubiquitinated
proteins were normalized to the corresponding optical densities of the β-actin bands and for each time point the resulting ratios were related to
the corresponding vehicle-treated control, which has been arbitrarily set at 1.0 (horizontal dashed line). Mean ± SD, n = 3. Student t test: *, P < 0.05;
, P < 0.01; **, P < 0.001 versus control.
nutrient uptake and body weight in mice, which hampers their use in clinical oncology (28). However, recently, several novel FASN drugs have been developed, which allegedly overcome these limitations including, but not limited, to C93, C247, and FAS31, a series of 3-aryl-4-hydroxyquinolin-2(1H)-one derivatives, several analogues of epigallocatechin-3-gallate, and a panel of bisamide derivatives. Many of these promising substances are now subject to clinical evaluation and it is hoped that at least some of them will exploit the full potential of FASN as a cancer drug target in the years to come (reviewed in ref. 29). Here, we show that C75- and FASN-specific siRNAs impair both expression and phosphorylation of the PI3K downstream effector proteins AKT, mTOR, S6, and 4EBP1, and stimulates protein ubiquitination (B and C). A2780 cells were transfected with either a nontargeting control siRNA (60 nmol/L) or with a set of 4 different FASN-targeting siRNAs (4 × 15 nmol/L). After 72 hours of cultivation, the transient transfectants were subjected to further experimentation. A, cell growth analysis using a formazan dye assay as described in Materials and Methods. Mean ± SD, n = 3, Student t test: ***, P < 0.001 versus control siRNA. B, SDS-PAGE followed by Western blot analysis using antibodies against FASN, against the total or the phosphorylated (p-) forms of the PI3K downstream effectors AKT, mTOR, S6, or 4EBP1, against the MAPK proteins ERK1 and ERK2, or against ubiquitin. β-Actin was used as loading control. One representative experiment. C, bands from autoradiographs were quantified by scanning densitometry. Each protein and p-protein band and the ubiquitinated proteins were normalized to β-actin. In addition, each p-protein band was also normalized to its corresponding total protein band. The resulting ratios (protein/actin, p-protein/actin, p-protein/protein) represent measures for expression, phosphorylation, and specific phosphorylation/activity of that particular protein, or for protein ubiquitination, respectively. All calculated ratios were related to the ratios obtained from samples transfected with control siRNA, which have been arbitrarily set at 1.0 (horizontal dashed line). Mean ± SD, n = 3, Student t test: *, P < 0.05; ***, P < 0.001 versus control siRNA.

Figure 4. Downregulation of FASN protein level in A2780 ovarian carcinoma cells by transient transfection of FASN-targeting siRNAs causes cytoreduction (A), downregulates the expression and phosphorylation of the PI3K downstream signaling proteins AKT, mTOR, S6, and 4EBP1, and stimulates protein ubiquitination (B and C). A2780 cells were transfected with either a nontargeting control siRNA (60 nmol/L) or with a set of 4 different FASN-targeting siRNAs (4 × 15 nmol/L). After 72 hours of cultivation, the transient transfectants were subjected to further experimentation. A, cell growth analysis using a formazan dye assay as described in Materials and Methods. Mean ± SD, n = 3, Student t test: ***, P < 0.001 versus control siRNA. B, SDS-PAGE followed by Western blot analysis using antibodies against FASN, against the total or the phosphorylated (p-) forms of the PI3K downstream effectors AKT, mTOR, S6, or 4EBP1, against the MAPK proteins ERK1 and ERK2, or against ubiquitin. β-Actin was used as loading control. One representative experiment. C, bands from autoradiographs were quantified by scanning densitometry. Each protein and p-protein band and the ubiquitinated proteins were normalized to β-actin. In addition, each p-protein band was also normalized to its corresponding total protein band. The resulting ratios (protein/actin, p-protein/actin, p-protein/protein) represent measures for expression, phosphorylation, and specific phosphorylation/activity of that particular protein, or for protein ubiquitination, respectively. All calculated ratios were related to the ratios obtained from samples transfected with control siRNA, which have been arbitrarily set at 1.0 (horizontal dashed line). Mean ± SD, n = 3, Student t test: *, P < 0.05; ***, P < 0.001 versus control siRNA.
Figure 5. The effects of the FASN blocker C75 on cell growth and survival (A, E, and F), on expression/phosphorylation of PI3K and MAPK signaling proteins and on protein ubiquitination (B–D) are not restricted to A2780 ovarian carcinoma cells. A, three additional ovarian carcinoma cell lines (OVCAR-3, SKOV-3, and HEY) were exposed for 72 hours to 0 to 20 µg/mL C75 and were subjected to cell growth analysis using a formazan dye assay as described in Materials and Methods. Mean ± SD, n = 3. Student t test: 1, OVCAR-3, P < 0.001; 2, SKOV-3, P < 0.001; 3, HEY, P < 0.001 versus 0 µg/mL C75 (control). B, the ovarian carcinoma cells were exposed for 72 hours to vehicle (0.1% DMSO) or to C75 (OVCAR-3, 6 µg/mL; SKOV-3, 20 µg/mL; HEY, 15 µg/mL) and were subjected to SDS-PAGE followed by Western blot analysis using antibodies against the total or the phosphorylated (p-) forms of AKT, S6, or ERK1/2, or against ubiquitin. β-Actin was used as loading control. One representative experiment. C, bands from autoradiographs were quantified by scanning densitometry. Each protein and p-protein band and the ubiquitinated proteins were normalized to β-actin. In addition, each p-protein band was also normalized to its corresponding total protein band. The resulting ratios (protein/actin, p-protein/actin, p-protein/protein) represent measures for expression, phosphorylation, and specific phosphorylation/activity of that particular protein, and for nonspecific protein ubiquitination, respectively. All calculated ratios were related to the ratios obtained from vehicle-treated control cells, which have been arbitrarily set at 1.0 (horizontal dashed line). Note that the y-axis has a log scale. Mean ± SD, n = 3. Student t test: **, P < 0.01; ***, P < 0.001 versus control. D, AKT is a direct client protein of C75-induced ubiquitination. Lysates of untreated (0.1% DMSO, 48 hours) and C75-treated (20 µg/mL, 48 hours) SKOV-3 cells were immunoprecipitated (IP) with antibodies against AKT or β-actin, respectively, subjected to SDS-PAGE and immunoblotted with antibodies against ubiquitin, AKT, or β-actin. β-Actin was used as loading control. Note: a C75-dependent increase of ubiquitinated AKT can be seen despite concurrent downregulation of the AKT protein steady-state level. E and F, C75 induces cell death in ovarian carcinoma cells. Treatment of SKOV-3 cells for 72 hours with C75 lowers the viable and elevates the nonviable cell population in a dose-dependent manner as shown by trypan blue dye exclusion (E). Western blot analyses for expression of caspase-3 and cleaved PARP-1 shows that OVCAR-3, SKOV-3, and HEY cells undergo apoptosis when exposed for 48 hours to 6, 20, or 15 µg/mL C75, respectively. β-Actin was used as loading control (F).
PI3K-blocked ovarian carcinoma cells (Figs. 1, 4, and 5 and Supplementary Fig. S1). This uncoupling between ERK1/2 expression and phosphorylation is in line with reports showing that the PI3K/AKT/mTOR cascade negatively cross-talks with MAPK signaling. For instance, it has been shown that hyperactive AKT curbs the function of C-Raf, which is the first kinase within the MAPK cascade (30). In addition, experimental data indicate that Rheb, which usually activates mTOR, also acts as an inhibitor of MAPK signaling (31). Importantly, exogenous expression of hyperactive AKT1, but not of hyperactive MEK1, significantly lowered the sensitivity of SKOV-3 cells against C75 (Fig. 7). Thus, our data suggest that the anticancer effects of FASN inhibition are, at least in part, mediated by inhibition of PI3K signaling.

Activation of the PI3K/AKT/mTOR cascade leads to phosphorylation and dislodgement of 4EBP1 from eIF4E. This enables eIF4E to bind to the scaffolding protein eIF4G, which contains the RNA helicase eIF4A as second binding partner. The assembly of eIF4A with eIF4E and eIF4G is designated eIF4F and represents the active translation initiation complex (4). PI3K/AKT/mTOR also activates ribosomal protein S6 via phosphorylation of p70S6K. Both events, activation of eIF4F and phosphorylation of S6, stimulate translation of genes that regulate cell growth and apoptosis. Therefore, it is tempting to speculate that C75- and FASN siRNA–mediated downregulation of PI3K signaling occurs in 2 steps including a negative autoregulatory loop. Inhibition of FASN would first inhibit the phosphorylation/activity of PI3K downstream effectors. This would result in reduced activity of 4EBP1 and S6 and, consequent-

ly, in reduced translation of oncogenic genes including the PI3K signaling proteins. However, our findings argue against this idea because we observed that the direct PI3K inhibitor LY294002 diminishes phosphorylation but does not reduce the expression of PI3K downstream proteins (Supplementary Fig. S1). Instead, we actually show that inhibition of FASN rather stimulates the degradation of PI3K and MAPK signaling proteins in ovarian carcinoma cells. Therefore, C75-induced downregulation of oncogenic signaling proteins likely is caused by increased proteolysis (Fig. 2). This is further supported by our finding that inhibition of FASN by C75– or by FASN–specific siRNAs markedly increases the ubiquitination of the proteins in ovarian carcinoma cells and that AKT is a direct client for ubiquitination (Figs. 3–5). Coupling of the short modifier protein ubiquitin to a lysine residue of a protein targets this protein for lysosomal or proteasomal degradation. In the ovarian carcinoma cells analyzed, it seems that the proteasome inhibitor bortezomib does not stabilize AKT and ERK1/2. Hence, these proteins are most likely degraded along the lysosomal rather than the proteasomal route (Fig. 6A), which correlates with our finding that inhibition of FASN causes striking accumulation of acidic vesicles, such as late endosomes and lysosomes and evaluated by fluorescence microscopy. The lysosomotropic agent chloroquine (CQ; 24 hours, 15 µm) was used as a positive control drug. Note the strong accumulation of orange granules in the cytoplasm of all treated cells.

Figure 6. Inhibition of FASN activates the lysosomal-autophagosomal degradation system. A, SKOV-3 cells were exposed for 48 hours to vehicle (0.2% DMSO), to C75 (20 µg/mL) alone, to bortezomib (BTZ; 0.07, 0.5, or 2 µm) alone, or to C75 and BTZ together and were then subjected to Western blot analysis for detection of AKT and ERK1/2 expression. α,β-Tubulin was used as loading control. B, SKOV-3 cells were exposed for 48 hours to vehicle (0.2% DMSO), to C75 (20 µg/mL) alone, to BTZ (2 µm) alone, or to C75 and BTZ together, stained with acridine orange, which labels acidic vesicles such as late endosomes and lysosomes and evaluated by fluorescence microscopy. The lysosomotropic agent chloroquine (CQ; 24 hours, 15 µm) was used as a positive control drug. Note the strong accumulation of orange granules in the cytoplasm of all treated cells.
inhibition of FASN. Generally, the activity of signaling pathways can be regulated either by site-specific phosphorylation of the effector proteins or by modulation of their expression level. Degradation of signaling proteins can occur either transiently in response to activation (32) or constitutively, independent of the activation state of the client

Figure 6. (Continued) C, ovarian carcinoma cells were exposed for 48 hours to vehicle (≤0.1% DMSO) or to C75 (OVCA-3, 6 µg/mL; SKOV-3, 20 µg/mL; HEY, 15 µg/mL) and then subjected to Western blot analysis for detection of posttranslational conversion of cytosolic LC3B-I (18 kDa) into the autophagosome-associated form LC3B-II (16 kDa). β-Actin was used as loading control. D, the autophagy inhibitor CQ counteracts C75-mediated growth inhibition. SKOV-3 cells were exposed for 72 hours to C75 (0–15 µg/mL) or to the autophagy inhibitor CQ (1.25, 2.5, or 5 µmol/L) alone or together and were then subjected to cell growth analysis using a formazan dye assay as described in Materials and Methods. Mean ± SD, n = 3. E and F, transient transfection of Beclin 1- or Atg5-targeting siRNAs (75 nmol/L, 72 hours) efficiently abrogates the expression of the key autophagic proteins Beclin 1 or Atg5 in SKOV-3 cells as shown by Western blot analysis, β-actin was used as loading control (E), and (F) counteracts C75-mediated growth inhibition. Nontargeting control-, Beclin 1-, and Atg5-siRNA-transfected cells were exposed for 72 hours to vehicle (0.1% DMSO) or to 10 µg/mL C75 and were then subjected to cell growth analysis using a formazan dye assay as described in Materials and Methods. Mean ± SD, n = 3, Student t test: *, P < 0.05; **, P < 0.001 versus GFP-transfected negative control cells.

Figure 7. Hyperactivation of PI3K/AKT signaling induces resistance of SKOV-3 cells against the FASN inhibitor C75. Cells were transiently transfected with CA-AKT1 or CA-MEK1. A plasmid harboring the GFP gene was used as negative control. A, resultant unselected polyclonal transfectant cell populations were processed for Western blotting for detection of transgene expression and signal effector phosphorylation. B, transfectants were exposed for 72 hours to the indicated concentrations of C75 and subjected to cell growth analysis using a formazan dye assay as described in Materials and Methods. Mean ± SD, n = 3, Student t test: **, P < 0.01; ***, P < 0.001 versus GFP-transfected negative control cells.
proteins. This has recently been shown for several PI3K downstream effectors including serine- and glucocorticoid-induced kinase-1 (SGK1) and p70S6K (31, 33–36). Our data reveal for the first time that blockade of FASN stimulates degradation of PI3K and MAPK signaling proteins, which is most likely caused by induced ubiquitination and subsequent autophagic decomposition of the effector proteins. This is corroborated by a recent report by Knowles and Smith (37), who showed that FASN activity is inversely related to the expression of several ubiquitination enzymes. Thus, we provide first evidence that inhibition of FASN reduces PI3K signaling not because of direct interference of FASN pathways with PI3K downstream effector phosphorylation but rather because of elevated ubiquitin-dependent proteolysis of these PI3K effectors.

In summary, our data show that growth arrest and cytoreduction, which is induced by inhibition of FASN activity, is mediated at least in part, by indirect silencing of the PI3K signaling pathway because of increased ubiquitination and degradation of the PI3K effector proteins. The observed molecular cross-talks between FASN, PI3K, and proteolytic pathways provide the rationales for a number of novel combination targeting approaches that may ultimately improve the clinical management of ovarian carcinomas.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

The work was supported by the Medical Scientific Fund of the Mayor of the City of Vienna (to C.F. Singer and T.W. Grunt, #803/37), Austria.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received October 17, 2010; revised August 31, 2011; accepted September 26, 2011; published OnlineFirst October 4, 2011.

References

27. Dai R, Chen R, Li H. Cross-talk between PI3K/Akt and MEK/ERK pathways mediates endoplasmic reticulum stress-induced cell cycle

Blockade of Fatty Acid Synthase Induces Ubiquitination and Degradation of Phosphoinositide-3-Kinase Signaling Proteins in Ovarian Cancer

Katharina Tomek, Renate Wagner, Franz Varga, et al.

Mol Cancer Res Published OnlineFirst October 4, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-10-0467

Supplementary Material
Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2011/10/05/1541-7786.MCR-10-0467.DC1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.