Constitutive Aberrant Endogenous Interleukin-1 Facilitates Inflammation and Growth in Human Melanoma

Yong Qin¹, Suhendan Ekmekcioglu¹, Ping Liu², Lyn M. Duncan³, Gregory Lizée¹, Nancy Poindexter¹, and Elizabeth A. Grimm¹

Departments of ¹Melanoma Medical Oncology and ²Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, and ³Dermatopathology Unit, Pathology Service, Massachusetts General Hospital, Boston, Massachusetts

Corresponding Author: Elizabeth A. Grimm

Running Title: IL-1 regulated growth and inflammation in melanoma

Grant Support: This research is supported by the University of Texas, MD Anderson Cancer Center SPORE in Melanoma (P50 CA093459) and Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Key Words: Interleukin-1, Melanoma, Inflammation, Autophagy, Reactive oxidative species (ROS).
Abstract

Interleukin-1-mediated inflammation is proposed to contribute to the development and progression of some cancers. IL-1 family member proteins are known to be expressed constitutively in many melanoma tumor cells, and we hypothesize that these support molecular pathways of inflammation and facilitate tumor growth. To investigate the expression of IL-1α and IL-1β in melanoma patients, and their association with disease progression, immunohistochemical staining was performed on tissues from 170 patients including benign nevi, primary melanomas, and metastatic melanomas. IL-1β levels were low (or zero) in benign nevi, and higher in primary and metastatic melanomas (P<0.0001). IL-1α was expressed in about 73% of nevi and 55% of metastatic melanomas, with levels significantly higher in primary tumors (P<0.0001); most (98%) primary melanoma samples were positive for IL-1α. In vitro studies with 7 human melanoma cell lines showed that 5 cell lines expressed IL-1α and IL-1β proteins and mRNA. We identified for the first time several important downstream signaling pathways affected by endogenous IL-1, including reactive oxygen and nitrogen species, COX-2, and phosphorylated IκB and SAPK/JNK; all of which were decreased by siRNA to IL-1s. Downregulation of IL-1α, IL-1β, or MyD88 substantially increased p21 and p53 levels. Treatment with IL-1 receptor type I neutralizing antibody or IL-1-pathway-specific siRNAs led to growth arrest in IL-1-positive melanoma cells. Furthermore, blocking the IL-1 pathway increased autophagy in IL-1-positive melanoma cells. These results indicate that the endogenous IL-1 system is functional in most human melanoma, and interrupting its signaling inhibits the growth of IL-1-positive melanoma cells.
Introduction

Chronic inflammation not only facilitates the progression of normal cells to malignancy, but also supports survival of many malignancies through production of pro-inflammatory cytokines and reactive oxygen (ROS) and nitrogen species (RNS). Melanoma is one of these tumor types that is strongly associated with the inflammatory process, as melanoma are known to secrete high levels of cytokines and produce ROS and RNS (1-4). The cytokines expressed by melanoma cells function as paracrine regulators of the microenvironment, and possibly as tumor growth supporting factors. It has been shown that pro-inflammatory molecules, such as interferon-γ and IL-1, can activate and recruit myeloid-derived suppressor cells (MDSCs) to the tumor sites, resulting in strong suppression of various T-cell functions (5-9). It is speculated that melanoma-expressed cytokines can stimulate MDSCs and promote highly immune-suppressed microenvironment. It is also well accepted that melanoma-expressed cytokines can also function as autocrine factors controlling tumor growth and metastasis. However, the scope and function of endogenous melanoma cytokines are poorly understood.

The constitutive expression of IL-1 has been shown to stimulate angiogenesis and promote tumor growth and metastasis in some human melanoma cells and mouse melanoma models (10-12). Thus, of all the melanoma-produced inflammatory factors, the interleukin-1 (IL-1) family of cytokines is of particular interest. The IL-1 family consists of two pro-inflammatory cytokines, IL-1α and IL-1β; an IL-1 receptor antagonist (IL-1Ra); and two different receptors, the biologically active IL-1 receptor type I (IL-1RI) and the inert IL-1RII (13). One recent study reports that in the absence of exogenous stimuli, some human melanoma cells spontaneously produce functional IL-1β, which leads to constitutive activation of the inflammasome (14).
Based on previous studies, we now hypothesize that the tumor-derived IL-1 promotes endogenous intracellular features of inflammation and thereby facilitates growth progression of human melanoma; also the downregulation of IL-1 signaling will suppress the growth of the IL-1-expressing melanoma.

Our group’s initial study of six human melanoma cell lines and 29 melanoma tissues showed that tumor-secreted IL-1 can function in a paracrine fashion (15). However, a more complete expression profile of IL-1α and IL-1β in melanoma has yet to be documented in vivo. Furthermore, the mechanisms of melanoma-expressed IL-1 driving inflammation and tumor progression are not yet fully understood. In the immune system, it has been reported that binding of IL-1 to IL-1RI can lead to recruitment of the adaptor molecule MyD88, which subsequently activates several important kinase transduction cascades resulting in activation of NF-κB and other inflammatory genes such as cyclooxygenase-2 (COX-2) (16-18). Whether autocrine IL-1 affects these inflammatory pathways in melanoma cells is still unclear.

In this study, we addressed the hypothesis presented above by testing the functional role of tumor-derived IL-1 in melanoma growth in a series of in vitro experiments. Further, we tested the association of the protein levels of IL-1 with melanoma progression by examining a melanoma tissue microarray with cores from 170 patients utilizing immunohistochemical (IHC) techniques. We identify for the first time several important downstream signaling pathways and markers that are affected by aberrant autocrine IL-1 in melanoma cells. We report here that blocking IL-1 signaling by specific siRNAs or IL-1RI-neutralizing antibody leads to the growth suppression in
IL-1 positive human melanoma cells. Furthermore, blocking the IL-1 pathway by specific siRNAs can lead to the induction of autophagy in IL-1-positive melanoma cells.

Materials and Methods

Antibodies and reagents. DNA oligomers and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were obtained from Sigma (St. Louis, MO). Acrylamide solution, ammonium persulfate, and \(N,N,N',N' \)-tetramethylethylenediamine were purchased from Bio-Rad Laboratories. LC3 antibody was purchased from Novus Biologicals; human IL-1RI-neutralizing antibody, goat IgG, and MyD88 antibody from R&D Systems; antibodies \(\text{I} \kappa \text{B-}\alpha \) (H-4) and \(\text{p-I} \kappa \text{B-}\alpha \) (B-9) from Santa Cruz Biotechnology; antibodies for COX-2, phospho-SAPK/JNK (81E11), and SAPK/JNK from Cell Signaling Technology. For IHC, IL-1\(\alpha \) antibody was from LifeSpan Biosciences, and antibody for IL-1\(\beta \) (H-153) was from Santa Cruz Biotechnology. For western blot, IL-1\(\alpha \) antibody (clone 4414) and IL-1\(\beta \) antibody (clone 8516) were from R&D Systems. Both nontarget and anti-human MyD88 SMARTpool siRNA were purchased from Dharmacon. Chimera RNAi for IL-1\(\alpha \) and IL-1\(\beta \) were purchased from Novus Biologicals.

Melanoma tissue microarray. The melanocytic tumor progression tissue microarray (TMA) was developed as a collaborative effort of the Harvard, M.D. Anderson, and University of Pennsylvania Skin SPOREs and served as a template for the investigation of IL-1 in human melanocytic tumors. This TMA was designed to provide samples of tumors from each step in melanocytic tumor progression (19). The TMA contains 480 tissue cores from 170 patients, consisting of benign nevi (132 cores from 36 patients), primary cutaneous melanomas (196 cores...
from 59 patients), melanoma metastases to lymph nodes (60 cores from 29 patients), and melanoma metastases to visceral organs (92 cores from 46 patients). Acral, mucosal, and uveal melanomas were excluded from this TMA (19).

Immunohistochemical studies. We used an IHC protocol, described by us previously (20), employing primary antibodies for IL-1α (1:100) and IL-1β (1:50). Immunolabeling was scored separately for two variables, first according to the percentage of melanoma cells with positive staining (<5% = 0, 5–25% = 1, 26–75% = 2, >75% = 3) and then according to the overall intensity of immunoreactivity of the positive cells (no staining = 0, light staining = 1, moderate staining = 2, marked staining = 3). Cases were considered to be positive if either the percentage or intensity scores were 1-3. The slides were manually scored independently by two researchers (SE and YQ) without prior knowledge of the tumor stage or data.

Cell culture and RNA isolation. Seven human melanoma cell lines were used in this study: A375, MeWo, SK-MEL-2, WM35, WM793, SB2, and TXM1, which were selected to represent the major somatically mutated and clinically relevant subtypes. Detailed information of each cell line and their authentication are provided in the Supplementary Data. Human melanoma cells were cultured in RPMI medium containing 100 U/mL penicillin, 100 μg/mL streptomycin, 200 mM L-glutamine, and 5% fetal bovine serum (FBS) (Sigma) at 37°C in a humidified atmosphere of 95% air and 5% CO2. Human melanocytes were purchased from PromoCell (Heidelberg, Germany) and cultured in melanocyte growth medium 2 (PromoCell). Cells were maintained in logarithmic growth phase. Total cellular RNA was extracted using a NucleoSpin RNA II kit (Macherey-Nagel, Bethlehem, PA).
siRNA transfection. Melanoma cells were plated in 6-well plates at 1×10^5 cells/well and cultured overnight at 37°C in 2 mL of RPMI medium. The next day, each well was transfected with 20 nM siRNA specific for IL-1α, IL-1β, or MyD88 with 3.2 μL of Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA). Co-transfection with 20 nM IL-1α siRNA and 20 nM IL-1β siRNA was used to downregulate IL-1α and IL-1β simultaneously. Transfection with 40 nM nontarget siRNA with 3.2 μL of Lipofectamine served as the negative control. Treatment with 3.2 μL of Lipofectamine without any siRNA served as another negative control. Cells were harvested 24–72 h after siRNA transfection and then subjected to analyses.

Western blot analysis. Cells were lysed in buffer containing 50 mM Tris (pH 7.9), 150 mM NaCl, 1% NP-40, 1 mM EDTA, 10% glycerol, 1 mM sodium vanadate, and protease inhibitor cocktail (Roche). Proteins were separated by 8% SDS-PAGE gels, transferred to a Hybond ECL nitrocellulose membrane (GE Healthcare Biosciences, Piscataway, NJ), and blocked in 5% dry milk in PBS. The membrane was then incubated with primary and secondary antibodies, and target proteins were detected with ECL detection reagent (GE Healthcare Biosciences).

Reverse transcription PCR (RT-PCR). To determine the mRNA levels of IL-1α and L-1β in melanoma cells, we performed first-strand cDNA synthesis with 400 ng of total RNA using a GeneAmp RNA PCR kit (Applied Biosystems, Carlsbad, CA) according to the manufacturer’s protocol. A 2-μL cDNA product was used for each 25-μL PCR reaction. The RT-PCR primers used to detect human IL-1α, IL-1β, and β-actin were adapted from those described previously (21, 22). The PCR protocol consisted of initial denaturation at 95°C for 5 min; 30 cycles of 95°C
for 40 s, 55.5°C for 30 s, and 72°C for 60 s; primer extension at 72°C for 1 min; and a final extension at 72°C for 10 min. We analyzed 20 μL of PCR product on a 1% agarose gel.

ROS/RNS detection and quantification. Melanoma cells treated with siRNA for 24 h were analyzed for ROS/RNS content using the ROS/RNS detection kit (Enzo Life Sciences, Plymouth Meeting, PA) according to the manufacturer’s protocol. The nitric oxide (NO) detection reagent reacts with NO to yield red fluorescence, and the total ROS detection dye reacts with a wide range of ROS/RNS to yield green fluorescence. We used a Nikon Eclipse TE2000U fluorescence microscope to capture images of the red and green fluorescence. Nikon Elements ROI Statistics software was used for the quantification. The average fluorescence intensity of 6 selected non-cell areas was used as the background. The fluorescence intensities of 10 different areas of cells were measured for each siRNA treatment. The background was subtracted from the intensity of each cell area. The adjusted intensity for each cell area was calculated.

Cell proliferation and viability assays. Human melanoma cells were plated in 24-well plates at 1 × 10⁴ cells/well and cultured overnight before treatment. For the cell proliferation assay, melanoma cells were treated with siRNAs for 72 h, and then MTT reagent was added to cells to a final concentration of 1 mg/mL. After 3 h, the precipitate formed in cells was dissolved in DMSO, and the color intensity was measured using a MRX revelation microplate absorbance reader (Dynex Technologies, Chantilly, VA) at 570 nm. For the cell viability assay, melanoma cells treated with antibodies for 72 h were trypsinized and harvested. The cells were washed with 1×PBS and then diluted in 0.2% trypan blue. The number of viable cells was determined.
Quantification of acidic vesicular organelles (AVOs). Melanoma cells treated with siRNA for 72 h were stained with acridine orange (AO) and analyzed by flow cytometry to determine the population of cells undergoing autophagy. Melanoma cells were incubated with 1 µg/mL AO at 37°C for 15 min. Then, cells were washed twice with 3 mL/well of PBS, trypsinized, and resuspended in 600 µL of RPMI medium with 10% FBS. The stained samples were analyzed using a FACSCalibur (Becton Dickinson, Mountain View, CA).

Statistical analysis. We used the Wilcoxon rank-sum test to compare fluorescence intensity for different treatments and to compare cell viability for different treatments. Fisher’s exact test was performed to compare the IL-1α and IL-1β expression levels versus tumor type. Levels of statistical significance were set at 0.05. All statistical analyses were performed with SAS version 9.2 software (SAS Institute Inc, Cary, NC).

Results

Expression profile of IL-1 in human melanoma tissues and cell lines. To determine whether melanoma cells express IL-1 in vivo, we used IHC to assess IL-1α and IL-1β protein levels on a TMA consisting of 480 tissue cores from clinically stratified melanoma specimens from 170 patients. We observed various positive-staining intensities and percentages in the cytoplasmic compartment of tumor cells for both IL-1α and IL-1β (Fig. 1A). IL-1α and IL-1β protein expression characteristics varied with melanocytic tumor progression. We observed positive cytoplasmic staining (percentage score 1–3) for IL-1α protein in 73.2% of benign nevi, 98.4% of primary melanomas, and 55% of metastatic melanomas (Table 1A). We observed the same trend for IL-1α staining intensity (Table 1A and Fig. 1B). IL-1α expression in primary melanomas
was significantly higher than nevus ($P < 0.0001$) and metastatic melanomas ($P < 0.0001$) (Fig. 1B, Table 1A). Moreover, the IL-1α expression in thick primary melanomas was higher than thin primary melanomas, but there was no difference in IL-1α expression between lymph nodes and visceral metastasis melanomas. As shown in Table 1A, the positive cytoplasmic staining (percentage score 1–3) for IL-1β increased significantly from nevus (0%) to primary tumor (13.0%) ($P < 0.0001$) and metastasis (9.8%) ($P = 0.0001$). Again, we observed the same trend for IL-1β staining intensity (Fig. 1C, Table 1A). Due to the low number of positive samples, there was no significant difference of IL-1β levels between primary and metastatic melanomas.

The expression IL-1α was significantly higher than IL-1β in melanocytic tumor tissues for staining percentage and intensity ($P < 0.0001$) (Table 1A). The IL-1α and IL-1β double-positive samples only appeared in about 10% of primary and metastatic melanoma tissues but not in nevi (Table 1B), where the IL-1β expression was rare. However, the tissue samples, which are double-positive to IL-1α and IL-1β increased significantly with progression from nevus to primary melanoma ($P = 0.0001$, both percentage and intensity scores) and from nevus to metastasis ($P < 0.007$, both percentage and intensity scores) (Table 1B). Interestingly, all but one of the IL-1β-positive melanoma samples was also IL-1α-positive; the exception was one metastatic melanoma sample, suggesting that in melanoma cells, IL-1β expression strongly correlates with IL-1α expression. We also analyzed IL-1α and IL-1β protein levels based on the case number (patient number) of the TMA. The result of statistical analyses based on the case number showed the same trend of IL-1α and IL-1β expression profiles in nevi, primary melanoma, and metastatic melanoma as comparing with the result analyzed by core number (supplementary data).
To explore the molecular mechanisms of autocrine IL-1 on melanoma cell growth in vitro, we examined the expression of IL-1α, IL-1β, and IL-1RI in human melanoma cell lines by western blot, RT-PCR, and IHC. Western blot analysis showed that all seven melanoma cell lines and the melanocytes expressed IL-1RI (Fig. 2A). A375, SB2, SK-MEL-2, WM35, and WM793 cells expressed high levels of IL-1α and IL-1β proteins, whereas the protein levels of IL-1α and IL-1β are extremely low in MeWo, TXM1, and the melanocytes (Fig. 2A). Semi-quantitative RT-PCR confirmed that IL-1α and IL-1β mRNA were highly expressed in A375, SB2, SK-MEL-2, WM35, and WM793 cells but undetectable in MeWo and TXM1 cells (Figure 2B). Therefore, A375 (metastatic melanoma) and WM793 (primary melanoma) cells were included as IL-1 positive lines, and MeWo and TXM-1 as negative lines in our functional studies. The pattern of positive staining for IL-1α and IL-1β were predominantly cytoplasmic in melanoma cells, which was demonstrated by IHC staining in A375 and WM793 cells of cytospin preparations (Fig. 2C). The expression of IL-1α and IL-1β was confirmed to be negative in TXM1 cells and melanocytes (Fig. 2C) by IHC staining.

Endogenous IL-1 affects the levels of downstream inflammatory markers and oxidative stress in melanoma cells. To investigate the association between autocrine IL-1 and downstream inflammatory molecules in melanoma cells, we used pathway-specific siRNAs to block the IL-1 signaling and examined the effects on IκB and COX-2. Under optimized experimental conditions, we could downregulate approximately 75% of IL-1α, IL-1β, and MyD88 levels in A375 and WM793 cells by specific siRNA against IL-1α, IL-1β, MyD88, respectively, after 24 h transfection. The effectiveness and specificity of our siRNA experiments were demonstrated by western blot and RT-PCR in A375 cells (Fig. 3A and B, additional siRNA data for WM793 cells
was shown in supplementary data). Downregulation of IL-1α, IL-1β, MyD88, or both IL-1α and IL-1β inhibited IkB phosphorylation but did not affect the levels of total IkB in A375 and WM793 cells (Fig. 3C). Lipofectamine, alone or nontarget siRNA did not affect IkB phosphorylation. As IkB phosphorylation can release and activate the inflammatory factor NF-κB (23), our data suggest that constitutive endogenous IL-1 may constantly activate NF-κB in human melanoma cells by stimulating IkB phosphorylation. Furthermore, downregulation of MyD88 or IL-1α and IL-1β decreased COX-2 protein levels in A375 and WM793 cells compared with controls (Fig. 3C). However, the IL-1α siRNA alone did not affect COX-2 levels. The IL-1β siRNA could downregulate COX-2 levels in WM793 but not in A375 (Figure 3C). These data suggest that elevated IL-1 signaling (both IL-1α and IL-1β) can promote COX-2 expression in melanoma cells.

The levels of NO and total ROS/RNS were measured in A375 and WM793 cells before and after downregulating MyD88 or IL-1α and IL-1β by siRNAs. Downregulating MyD88 or both IL-1α and IL-1β decreased red fluorescence intensity, indicating NO production, by 50–60% in A375 cells (\(P = 0.0009 \), Fig. 4A and B). Similarly, downregulating MyD88 or both IL-1α and IL-1β decreased green fluorescence intensity, indicating a reduction of total ROS/RNS levels by 50–60% in A375 cells (\(P = 0.0007 \), Fig. 4A and C). In contrast, nontarget siRNA did not affect the levels of NO or total ROS/RNS as compared to the lipofectamine control (Fig. 4A-C). These results indicate that autocrine IL-1 plays a critical role in sustaining oxidative stress in melanoma cells.
Endogenous IL-1 regulates the levels of p21, p53, and phosphorylated SAPK/JNK in human melanoma cells. The tumor suppressors, p21 and p53, are sensors of diverse cellular stresses, including DNA damage and oxidative stress (24). Thus, we examined whether the oxidative stress driven by aberrant endogenous IL-1 affected the levels of p21 and p53 in melanoma cells. Downregulating IL-1α, IL-1β, or MyD88 increased p21 and p53 levels in A375 and WM793 cells compared with controls (Fig. 4D), suggesting that aberrant autocrine IL-1 represses p21 and p53 expression in melanoma cells.

As kinase inhibitors have been successfully used in cancer therapy, we attempted to identify the major stress kinase regulated by endogenous IL-1 in melanoma cells. Downregulation of IL-1β or both IL-1α and IL-1β by siRNAs substantially decreased SAPK/JNK phosphorylation in A375 and WM793 cells but did not affect total SAPK/JNK levels (Fig. 4D). However, the effect of downregulating only IL-1α or MyD88 on SAPK/JNK phosphorylation varied between A375 and WM793 cells. IL-1α downregulation inhibited SAPK/JNK phosphorylation in A375 cells but had only a slightly inhibitory effect on SAPK/JNK phosphorylation in WM793 cells. MyD88 downregulation produced similar results, which indicated that MyD88 may not be the major adaptor to mediate the major signaling pathway to activate SAPK/JNK by endogenous IL-1 in WM793 cells (Fig. 4D). These data suggest that SAPK/JNK is one major signal transduction pathway that is regulated by autocrine IL-1 in melanoma cells. Furthermore, autocrine IL-1 may activate SAPK/JNK through signal transduction other than MyD88 in A375 and WM793 cells. Our data suggests that activation of SAPK/JNK may be conducted through a MyD88-independent signaling pathway in WM793 cells. We also attempted to identify other kinases
affected by blocking autocrine IL-1 signaling in human melanoma cells, but we did not observe any significant change on the phosphorylation of AKT or PI3K (data not shown).

Blocking the IL-1 signaling pathway represses human melanoma cell growth. To directly assess whether autocrine IL-1 regulates growth of human melanoma cells, we used IL-1RI-neutralizing antibody to block IL-1 signaling in A375 and WM793 cells and normal melanocytes and measured the cell viability. Treatment with 2.75 μg/mL IL-1RI-neutralizing antibody decreased cell viability in A375 and WM793 cells by approximately 25% compared to treatment with goat IgG or no antibody, which was statistically significant ($P = 0.04$) (Fig. 5A). Furthermore, IL-1RI-neutralizing antibody did not significantly inhibit melanocytes growth (Fig. 5A).

We also used a second method to assess the effect of endogenous IL-1 on growth of human melanoma cells. We applied the MTT cell proliferation assay in six melanoma cell lines after siRNA treatment for 72 h to block the IL-1 pathway. For the cell lines with high IL-1 expression—A375, WM793, WM35, and SB2—downregulating IL-1α, IL-1β, or MyD88 decreased cell proliferation by 30–65% (Fig. 5B). In all four cell lines, downregulating both IL-1α and IL-1β decreased cell proliferation by 60–75% compared with nontarget siRNA treatment (Fig. 5B). For the cell lines with low IL-1 expression, MeWo and TXM1, downregulating IL-1α, IL-1β, or MyD88 showed slightly 5-15% decreases of cell proliferation compared with the treatment of nontarget siRNA, which were not statistically significant. Thus, the blockage of IL-1 signaling did not inhibit cell proliferation significantly in MeWo and TXM1. These data suggest that autocrine IL-1 supports melanoma cell growth, and conversely that blocking the IL-
1 signaling specifically inhibits the growth of human melanoma cells with elevated IL-1 expression, but not the IL-1-negative melanoma cells or normal melanocytes.

Downregulation of the IL-1 signaling pathway induces autophagy in melanoma cells. We next investigated whether the suppression of melanoma cell growth induced by blocking the IL-1 signaling pathway was due to apoptosis. We did not find any distinct change in the levels of PARP, cleaved PARP, caspase-3, or cleaved caspase-3 in A375 and WM793 cells treated with IL-1RI-neutralizing antibody or siRNAs against IL-1α, IL-1β, and MyD88 for 72 h (Supplementary data). These results indicate that the suppression of melanoma cell growth induced by blocking the IL-1 pathway was not due to apoptosis.

Subsequently, we tested whether the downregulation of IL-1 signaling could lead to the induction of autophagy in IL-1-positive melanoma cells. First, we examined the expression of microtubule-associated 1 light chain 3 I (LC3-I) and its cleavage product LC3-II, which is enriched in the autophagic vacuole fraction during autophagosome formation (25, 26). We found that in A375 cells, both the level of LC3-II and the ratio of LC3-II to LC3-I increased substantially after IL-1α, IL-1β, or MyD88 siRNA treatment (Fig. 6A). In WM793 cells, IL-1α, IL-1β, and MyD88 siRNA treatment increased levels of both LC3-I and LC3-II (Fig. 6A). Thus, blocking the IL-1 pathway triggered both the conversion of LC3-I to LC3-II and the synthesis of LC3 protein in melanoma cells indicating the increase of autophagy.

To confirm autophagy, we performed acridine orange (AO) staining with analysis by flow cytometry to quantitate the formation of acidic vesicular organelles (AVOs), which are
associated with autophagy (27). As expected, downregulation of IL-1α, IL-1β, or MyD88 in A375 cells increased the percentage of cells with AVOs to 17.87%, 21.83%, and 13.31%, respectively, compared with nontarget siRNA and Lipofectamine controls (7.41% and 6.14%, respectively) (Fig. 6B). Downregulation of both IL-1α and IL-1β increased the percentage of cells with AVOs to 29.89% (Fig. 6B), approximately 4 times that of the controls in A375 cells. Similarly, downregulation of IL-1α, IL-1β, or MyD88 in WM793 cells increased the percentage of cells with AVOs to 12.00%, 12.27%, and 12.87%, respectively, compared with nontarget siRNA and Lipofectamine controls (5.11% and 5.14%, respectively) (Fig. 6C). Downregulation of both IL-1α and IL-1β increased the percentage of cells with AVOs to 15.92% (Fig. 6C), approximately 3 times that of the controls in WM793 cells. In contrast, downregulation of IL-1α, IL-1β, MyD88, or IL-1α and IL-1β together slightly increased about 0.4~1.1% of cells with AVOs as compared to nontarget siRNA treatment in MeWo cells (Figure 6D). In our flow cytometry analysis, 10⁴ cells were analyzed for each sample. For MeWo cells, the autophagic population induced by IL-1-pathway-specific siRNAs was around 20~110 cells as compared to nontarget siRNA treatment, which was substantially lower than those in A375 and WM793 cells (600~2200 cells). Therefore, downregulation of IL-1 signaling did not have any significant autophagy-inducing effect in MeWo cells (Fig. 6D). Collectively, our data show that blocking the IL-1 pathway can induce autophagy in melanoma cells with elevated IL-1 expression.

Discussion

We hypothesized that the tumor-derived IL-1 promotes endogenous inflammatory products that further facilitate growth and progression of human melanoma. To determine the IL-1 family expression in human tumor samples, we performed biostatistical analysis of IL-1α and IL-1β
protein expression in a TMA with 480 tissue cores from 170 patients. By using this TMA, we were able to perform biostatistical analysis of IL-1α and IL-1β expression in melanocytic tumor progression for the first time. We found IL-1α and IL-1β were significantly elevated in primary melanoma, and that IL-1α was predominant. Such data also suggest that the elevated autocrine IL-1 signaling may be crucial for and primary melanoma development. Studies were then devised to interrupt the IL-1 signaling pathway, which resulted in decreasing reactive oxidative species and other proteins levels of COX-2, and phosphorylation of IκB and SAPK/JNK. Our studies indicate that the elevated oxidative stress induced by constitutive autocrine IL-1 is a driving force in chronic inflammation in human melanoma cells. The study from Dr. Fujita’s group showed that melanoma cells spontaneously secreted IL-1β leading to constitutive activation of the NALP3 inflammasome, which contributed to the autoinflammation in human melanoma (14). Along with the data from Dr. Fujita’s group, our studies further confirm that the tumor-derived IL-1, including IL-1α and IL-1β, promotes inflammation and thereby facilitates growth progression of human melanoma. Our results also suggest that autocrine IL-1 suppresses p21 and p53 expression to low levels even under elevated oxidative stress. Furthermore, the interruption of endogenous IL-1 signaling could inhibit the growth of IL-1-expressing melanoma cells. Our results suggest that selectively inhibiting IL-1 signaling may be a promising therapeutic strategy in the subgroup of melanoma patients with constitutively high IL-1 expression.

In contrast to our finding, several studies showed that exogenous IL-1 could suppress the proliferation of some melanoma cells in vitro (28-31). These studies were mainly conducted in melanoma lines, A375.S2 and A375-6, which were sub-clones derived from A375 and have been
well established as IL-1-sensitive lines. However, our results showed that melanoma tumor expressed high levels of IL-1, and the endogenous IL-1 could promote inflammation and support the growth of melanoma. The discrepancy between our studies and other studies may reflect the heterogeneity and clonal evolution of melanoma, as clearly A375.S2 and A375-6 lines represent a unique subset of melanoma cells that are sensitive to the cytocidal effect of IL-1 in vitro. It is still not clear if endogenous IL-1 and IL-1R exist in A375.S2 and A375-6 cells, and whether there was any genetic alteration in these cells different from their parental line, A375. To date, there is a lack of evidence that exogenous IL-1 inhibits melanoma growth in vivo. Further investigation is needed to determine whether the IL-1-sensitive melanomas exit in vivo under physiological conditions.

Although IL-1β was expressed to a smaller extent (about 10%) in primary and metastatic melanoma than IL-1α, it is strongly correlated with IL-1α expression. Our studies indicated that downregulating both IL-1α and IL-1β inhibited melanoma cell growth more than blocking only IL-1α or IL-1β. We also found that IL-1α and IL-1β were expressed in both BRAF mutant (A375, WM35, and WM793) and BRAF wild-type (SK-MEL-2 and SB2) melanoma cells (supplementary data). Furthermore, the expression of IL-1α has been found in above 98% of primary melanoma from different genetic backgrounds. Thus, IL-1 is likely active in a large subpopulation of melanoma patients, and not related to BRAF mutations. We are now interested in conducting studies to determine why melanoma cells produce predominantly IL-1α rather than IL-1β; as well as have initiated a study to investigate the expression profile of IL-1Ra and its biological role in human melanoma cells.
For the first time, we report an association between the upregulation of IL-1 signaling and activated SAPK/JNK in human melanoma cells. Interestingly, MyD88 knockdown had a slight inhibitory effect on SAPK/JNK activation in WM793 cells, which is much weaker than the siRNA knockdown of IL-1α and IL-1β (Figure 4D and supplementary data). These results suggest heterogeneity of endogenous IL-1 downstream signaling in different melanoma cell lines. We speculate that IL-1 may activate SAPK/JNK through the other Toll-like-receptor adaptors binding to IL-1RI, which are MyD88-independent. Previous studies have shown that TRIF-related adaptor molecule (TRAM) was specifically involved in the Toll-like receptor-mediated MyD88-independent signaling pathway (32, 33). Based on this unexpected data, we initiated a study to examine the role of TRAM on activating SAPK/JNK by IL-1 in WM793 cells. In our preliminary study, the knockdown of TRAM by specific siRNA did not show any significant inhibitory effect on the phosphorylation of SAPK/JNK in WM793 cells (supplementary data). This data further indicates that in addition to My88, TRAM is not likely to be involved in activation of SAPK/JNK in WM793 cells. As we known, Toll-like receptor (TLR) signaling is very complicated; in addition to MyD88 and TRAM, additional considerations also include Toll-like receptor domain-containing adapter-inducing interferon (TRIF), and MyD88 adaptor-like (Mal) (34). Currently, it is still not clear whether SAPK/JNK is affected by other signaling pathways other than IL-1 in WM793 cells. We are now conducting experiments to test Mal and TRIF involvement in regulating SAPK/JNK activation in WM793 cells. Therefore, as siRNA knocking down MyD88 can lead to a significant reduction of the phosphorylated IκB in WM793 cells (Figure 3C), the IL-1 signaling conducted through MyD88 is considered as one major pathway to stimulate downstream inflammatory genes in WM793 cells.
The expression of IL-1α and IL-1β is significantly elevated in primary melanoma indicating that the elevated endogenous IL-1 and related downstream signaling may be crucial for primary melanoma development. Recent studies from Dr. Lynda Chin’s group showed that the mutated BRAF alone was not sufficient to transform melanocytes in vivo (35). However, the UV-induced robust activation of JNK might be considered as part of the additional factor(s) needed to transform BRAF-mutated melanocytes (35). The observation of IL-1 elevation in primary melanoma suggests that the autocrine IL-1-induced activation of JNK may play a critical role in melanocytes transformation and tumor initiation in the absent of risk factors, such as UV radiation. We are currently investigating the role of JNK in mediating oncogenic behavior driven by aberrant endogenous IL-1 in melanoma and the potential of using JNK inhibitors to inhibit melanoma cell growth.

To our knowledge, this is the first study to show that the IL-1 signaling pathway regulates autophagy in human melanoma cells. Recent studies showed that SAPK/JNK activation occurred downstream of autophagy induction and was dependent on the autophagic process in mice (36, 37). Our results suggest that IL-1 may be a key link between SAPK/JNK and autophagy, however, further investigation is needed to determine whether the linkage between IL-1 signaling, SAPK/JNK, and autophagy exists in human melanoma cells.

In clinical studies, the accumulation of MDSCs has been shown to functionally suppress the immune response in melanoma patients (38). It is known that IL-1 can stimulate MDSCs (7). Therefore, we speculate that the constitutive melanoma-expressed IL-1 can activate and recruit MDSCs to tumor sites resulting in immunosuppression. This mechanism may, in part, explain
the high resistance to immunotherapy and the aggressive behavior of some melanomas. For melanoma patients with aberrantly high levels of IL-1 in tumors, blocking the IL-1 pathway may inhibit tumor growth by interrupting the autocrine stimulation and may also be able to reverse immunosuppression by inhibiting the paracrine activation of MDSCs in the tumor microenvironment. Further studies are needed to determine if this can be achieved safely without immunosuppressive toxicity.

ACKNOWLEDGMENTS

We thank Sandra Kinney (MD Anderson) for assistance in the IHC studies and Wendy Schawa (MD Anderson) for assistance in flow cytometry studies. We are grateful to Karen Muller for proofreading and editing the manuscript and figures. We also thank MDACC Characterized Cell Line Core Facility for STR DNA fingerprinting of our melanoma cell lines, the Flow Cytometry and Cellular Imagine Facility at MD Anderson (funded by NCI CA16672) for AO staining analysis.
FIGURE AND TABLE LEGENDS

Figure 1. Expression profile of IL-1α and IL-1β in human melanocytic tumors. A, Representative IHC staining for IL-1α and IL-1β in serial human melanocytic tumor tissue cores. Staining intensity increases from left to right. B and C, Mean intensity scores and percentage scores of TMA samples of different tumor types: IL-1α expression (B) and IL-1β expression (C). Columns, mean; error bars, SD. *, P < 0.05. P values from Fisher’s exact test. Tumor types and core number were defined at the under panels of B and C.

Figure 2. Expression profile of IL-1 system genes in human melanoma cells. A, Western blot analysis of 40-μg cell lysates of A375, WM793, WM35, SB2, SK-MEL-2, MeWo, TXM1, and melanocytes using anti-IL-1RI, anti-IL-1α, and anti-IL-1β antibodies; β-actin served as control. The concentration for primary antibodies was 1 μg/ml. B, RT-PCR analysis of the mRNA expression of IL-1α, IL-1β, and β-actin in the seven human melanoma cell lines. C, Comparison of IHC staining for IL-1α and IL-1β using human melanoma cell lines (A375, TXM, andWM793) and melanocytes (NHEM). Anti-IL-1α antibody was used at 1:100 and anti-IL-1β antibody at 1:50.

Figure 3. Effects of siRNA downregulation of IL-1 system genes on several important protein factors in A375 and WM793 cells. A and B, RT-PCR and western blot analysis showed that anti-IL-1α, anti-IL-1β, and anti-MyD88 siRNA could specifically downregulate IL-1α, IL-1β, and MyD88, respectively, in A375 cells. C, Western blot analysis of the effect of siRNA
downregulation of IL-1α, IL-1β, or MyD88 on the levels of inflammatory molecules COX-2, phosphorylated IκB and total IκB. In all experiments, A375 or WM793 cells transfected with nontarget siRNA or treated with Lipofectamine only served as negative controls, and β-actin served as the internal loading control. Shown are representative data from one of three experiments.

Figure 4. Effects of siRNA downregulation of the IL-1 signaling pathway on the production of free NO and ROS/RNS in A375 cells. A, Red fluorescence representing free NO and green fluorescence representing total ROS/RNS in A375 cells. Transfection with IL-1α and IL-1β siRNAs or MyD88 siRNA for 24 h decreased the red fluorescence and green fluorescence intensity, indicating decreased NO and total ROS/RNS levels, compared with nontarget siRNA. B, Quantitative analysis of red fluorescence intensity of NO in A375 cells for the different treatments. C, Quantitative analysis of green fluorescence intensity of in A375 cells for the different treatments. In B and C, columns, mean of 10 visualized fluorescence areas of A375 cells for each treatment; error bars, standard error. *P* values from Wilcoxon rank-sum test. D, Western blot analysis of the effect of siRNA downregulation of IL-1α, IL-1β, or MyD88 on the expression of p53 and p21 in A375 and WM793 cells. The levels of phosphorylated SAPK/JNK and total SAPK/JNK were also analyzed in A375 and WM793 cells treated with IL-1α, IL-1β, or MyD88 siRNA. Cells transfected with nontarget siRNA or treated with Lipofectamine only served as negative controls, and β-actin served as the internal loading control.

Figure 5. Interrupting the IL-1 signaling suppresses growth of human melanoma cells. A, Normal melanocytes, A375, and WM793 cells were treated with 2.75 μg/mL IL-1RI-neutralizing
antibody or goat IgG for 72 h. Treatment with no antibody served as another negative control. Percentage of healthy cells was used to determine cell viability for different treatments. Columns, mean of three independent experiments; error bars, SD. P values from Wilcoxon Rank-sum test.

B, Effect of siRNA knockdown of IL-1α, IL-1β, and MyD88 on the growth of A375, WM793, WM35, SB2, TXM1, and MeWo cells. Cell proliferation was determined by MTT assay after siRNA treatment for 72 h. Columns, mean of three independent experiments; error bars, SD.

Figure 6. Interrupting the IL-1 signaling pathway can induce autophagy in human melanoma cells with elevated IL-1 expression. A, Western blot analysis of the effect of siRNA downregulation of IL-1α, IL-1β, or MyD88 on the levels of LC3-I and LC3-II in A375 and WM793 cells. In all experiments, cells transfected with nontarget siRNA or treated with Lipofectamine only served as negative controls, and β-actin served as the internal loading control. Shown are representative data from one of three experiments. B and C, siRNA downregulation of IL-1α, IL-1β, and MyD88 increased the percentage of A375 and WM793 cells with AVOs. D, siRNA downregulation of IL-1 system genes did not affect the percentage of MeWo cells with AVOs. A375, WM793, and MeWo cells were treated with Lipofectamine only (1), nontarget siRNA (2), IL-1α siRNA (3), IL-1β siRNA (4), both IL-1α and IL-1β siRNAs (5), or MyD88 siRNA (6) for 72 h. Cells were stained with AO and analyzed by flow cytometry. Approximate locations of autophagic cells are boxed, and the percentage of the autophagic population is indicated. FL1-H, green fluorescence intensity; FL3-H, red fluorescence intensity.
References

Supplementary Data

Materials and Methods

Human melanoma cell lines and authentication. We obtained A375 and MeWo cells from the American Type Culture Collection and SK-MEL-2 cells from the National Cancer Institute’s Division of Cancer Treatment and Diagnosis. The WM35 and WM793 cell lines were provided by Dr. M. Herlyn (The Wistar Institute, Philadelphia, PA). SB2 cells were provided by Dr. M. Davies and TXM1 cells by Dr. J. Price (The University of Texas MD Anderson Cancer Center, Houston, TX). The A375, MeWo, TXM1, and SK-MEL-2 cell lines are derived from metastatic melanoma, whereas the SB2, WM35, and WM793 cell lines are derived from primary melanoma. A375 contains B-Raf mutant (V600E), MeWo contains c-Kit (D816) and p53 mutants, TXM1 contains B-Raf and N-Ras mutants, SK-MEL-2 contains N-Ras and p53 mutants, SB2 contains N-Ras mutant, and WM35 and WM793 contain B-Raf mutant (V600E) and PTEN mutant (R). The important mutations of these cell lines were summarized in Table S1. All these human melanoma cell lines were validated by cell line authentication at MD Anderson Cancer Center in December 2008. To validate cell lines, short tandem repeat (STR) DNA fingerprinting techniques were used and mutational analysis was performed by the Characterized Cell Line Core Facility at MD Anderson. Cell lines were validated by STR DNA fingerprinting using the AmpFISTR Identifiler kit (Applied Biosystems catalog # 4322288) according to the manufacturer’s instructions. The STR profiles were compared to known American Type Culture Collection fingerprints (ATCC.org) and to the Cell Line Integrated Molecular Authentication database (CLIMA) version 0.1.200808 (http://bioinformatics.istge.it/clima/) (1). The STR profiles matched known DNA fingerprints or were unique.
The siRNA knockdown of TRAM in WM793 cells. The anti-human TRAM SMARTpool siRNA was purchased from Dharmacon. The RT-PCR primers used to detect human TRAM mRNA were 5’- GGGAGCTCAGAGCGTGGAA-3’ and 5’- GGCAATAAATTGTCTTTGTACCAT-3’, which were designed based on the NCBI Reference Sequence, NM_021649.6.

Results

Specifically downregulating IL-1β expression in WM793 cells with anti-IL-1β siRNA.

WM793 cells were transfected by specific siRNA against IL-1α, IL-1β, MyD88, respectively. The effectiveness and specificity of anti-IL-1β siRNA on the expression of IL-1β in WM793 cells were demonstrated by western blot after 24-hour siRNA transfection (Fig. S1).

Statistical analyses of IL-1α and IL-1β expression profiles in nevi, primary melanoma, and metastatic melanoma according to case number (patient number). We used IHC to assess IL-1α and IL-1β protein levels on a TMA consisting of 480 tissue cores from clinically stratified melanoma specimens from 170 patients. We analyzed IL-1α and IL-1β protein levels based on the case number (patient number) of the TMA. The statistical analyses results showed the same trend of IL-1α and IL-1β expression profiles in nevi, primary melanoma, and metastatic melanoma as compared with the result analyzed by tissue core number. We observed positive staining for IL-1α protein in 62.9% of patients’ benign nevi, 96.5% of patients’ primary melanomas, and 55.3% of patients’ metastatic melanomas (Table S1). We observed the same trend for IL-1α staining intensity (Table S1 and Fig. S2A). IL-1α expression in primary melanomas was significantly higher than nevus (P < 0.0001) and metastatic melanomas (P <
0.0001) (Table S1 and Fig. S2A). As shown in Table S1, the positive staining for IL-1β increased significantly from nevus (0%) to primary tumor (20.4%) (P = 0.0042). Again, we observed the same trend for IL-1β staining intensity (Table S1 and Fig. S2B). Due to the low number of positive samples, there was no significant difference of IL-1β levels between primary and metastatic melanomas. The expression of IL-1α was significantly higher than IL-1β in melanocytic tumor tissues for staining percentage and intensity (P < 0.0001) (Table S2).

Downregulation of IL-1 signaling pathway did not induce apoptosis in melanoma cells. We investigated whether the suppression of melanoma cell growth induced by blocking the IL-1 signaling pathway was due to apoptosis. A375 and WM793 cells were treated with IL-1α, IL-1β, or MyD88 siRNA for 72 h. We did not find any distinct change in the levels of PARP, cleaved PARP, caspase-3, or cleaved caspase-3 in the cells treated with IL-1α, IL-1β, or MyD88 siRNAs compared with controls (Supplementary Fig. S3A and B). This result indicates that the suppression of melanoma cell growth induced by blocking the IL-1 pathway is not due to apoptosis.

Downregulation of TRAM did not affect the phosphorylation of SAPK/JNK in WM793 cells. We investigated whether the downregulation of TRAM by specific siRNA could affect the activation of SAPK/JNK in WM793 cells. WM793 cells were treated with IL-1α, IL-1β, MyD88, or TRAM siRNA for 24 h. The effectiveness and specificity of anti-TRAM siRNA on the expression of TRAM mRNA in WM793 cells were demonstrated by RT-PCR after 24-hour siRNA transfection (Fig. S4A). We did not find any distinct change in the levels of phosphorylated and total SAPK/JNK in the cells treated with TRAM siRNA compared with
controls (Supplementary Fig. S4B). This result indicates that TRAM signaling may not be the major pathway to activate SAPK/JNK in WM793 cells.

Figure legend

Figure S1. Western blot analysis of the effect of siRNA for IL-1α, IL-1β, or MyD88 on the levels of IL-1β in A375 cells after 24-hour transfection. The transfection of nontarget siRNA or the treatment with Lipofectamine only served as negative controls, and β-actin served as the internal loading control.

Figure S2. Expression profile of IL-1α and IL-1β in human melanocytic tumors statistically analyzed by case number. A and B, Mean intensity scores and percentage scores of TMA samples of different tumor types: IL-1α expression (A) and IL-1β expression (B). Columns, mean; error bars, SD. *, $P < 0.05$. P values from Fisher’s exact test.

Figure S3. Effects of siRNA downregulation of IL-1 system genes on PARP and caspase-3 in A375 and WM793 cells. A and B, Western blot analysis of the effect of siRNA downregulating IL-1α, IL-1β, or MyD88 on the expression of PARP, caspase-3, and their cleavage isoforms in A375 (A) and WM793 (B) cells.

Figure S4. A, Rt-PCR analysis of the effect of siRNA for IL-1α, IL-1β, MyD88, or TRAM on the levels of TRAM in WM793 cells after 24-hour transfection. The transfection of nontarget siRNA or the treatment with Lipofectamine only served as negative controls, and β-actin served
as the internal loading control. B, Western blot analysis of the effect of siRNA downregulating TRAM, MyD88, and IL-1α and IL-1β together on the expression of TRAM in WM793 cells.

Reference for Supplementary Data

Table 1

Table 1. IHC detection of IL-1α and IL-1β in human melanocytic tumors.

<table>
<thead>
<tr>
<th>Table 1a: IL-1α and IL-1β vs. Tumor types</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
</tr>
<tr>
<td>Tumor types</td>
</tr>
<tr>
<td>Cores Number</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
</tr>
<tr>
<td>IL-1β</td>
</tr>
<tr>
<td>Cores Number</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
</tr>
</tbody>
</table>

Nevus include thin and thick nevus; primary tissues include thin and thick primary melanomas; metastases include metastatic lymph nodes and visceral melanomas.

<table>
<thead>
<tr>
<th>Table 1b: IL-1α/IL-1β vs. Tumor types</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α/IL-1β</td>
</tr>
<tr>
<td>Tumor types</td>
</tr>
<tr>
<td>Double Negative</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
</tr>
</tbody>
</table>

Nevus include thin and thick nevus; primary tissues include thin and thick primary melanomas; metastases include metastatic lymph nodes and visceral melanomas.
Figure 1

1A

Images showing staining for IL-1α and IL-1β in different tissue samples:
- Negative
- Intermediate
- Marked

1B

Bar graph showing mean scores for IL-1α:
- Tumor Types: Nevi (thin), Nevi (thick), Primary (thin), Primary (thick), Metastases (lymph nodes, LN), Metastases (visceral)
- Mean Percentage Score and Mean Intensity

1C

Bar graph showing mean scores for IL-1β:
- Tumor Types: Nevi (thin), Nevi (thick), Primary (thin), Primary (thick), Metastases (lymph nodes, LN), Metastases (visceral)
- Mean Percentage Score and Mean Intensity
Figure 2

2A

<table>
<thead>
<tr>
<th></th>
<th>A375</th>
<th>WM793</th>
<th>WM35</th>
<th>SB2</th>
<th>SK-MEL-2</th>
<th>MeWo</th>
<th>TXM1</th>
<th>Melanocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1RI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>WM793</th>
<th>WM35</th>
<th>Melanocytes</th>
<th>SB2</th>
<th>A375</th>
<th>MeWo</th>
<th>SK-MEL-2</th>
<th>TXM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>WM793</th>
<th>WM35</th>
<th>Melanocytes</th>
<th>SB2</th>
<th>A375</th>
<th>MeWo</th>
<th>SK-MEL-2</th>
<th>TXM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2B

<table>
<thead>
<tr>
<th></th>
<th>WM35</th>
<th>WM793</th>
<th>SK-MEL-2</th>
<th>A375</th>
<th>MeWo</th>
<th>SB2</th>
<th>TXM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2

<table>
<thead>
<tr>
<th>2C</th>
<th>IL-1α</th>
<th>IL-1β</th>
</tr>
</thead>
<tbody>
<tr>
<td>A375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WM793</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHEM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3

3A

RT-PCR

Control (Lipofectamine)
Control
Non-target siRNA
siRNA (IL-1α)
siRNA (IL-1β)
siRNA (IL-1α + IL-1β)

β-actin

IL-1α

IL-1β

3B

Western Blot

Control (Lipofectamine)
Control
Non-target siRNA
siRNA (IL-1α)
siRNA (IL-1β)
siRNA (IL-1α + IL-1β)

β-actin

IL-1α

IL-1β

MyD88

3C

A375

Control (Lipofectamine)
Control
Non-target siRNA
siRNA (IL-1α)
siRNA (IL-1β)
siRNA (IL-1α + IL-1β)

p-κB

Total κB

COX-2

β-actin

WM793

Control (Lipofectamine)
Control
Non-target siRNA
siRNA (IL-1α)
siRNA (IL-1β)
siRNA (IL-1α + IL-1β)

p-κB

Total κB

COX-2

β-Actin
Figure 4

4A

Control (Lipofectamine)	Control (Nontarget siRNA)
Total NO

Total ROS/RNS

siRNAs (IL-1α + IL-1β)	siRNA (MyD88)
Total NO

Total ROS/RNS

4B

Chart showing fluorescence intensity for different conditions.

4C

Chart showing ROS/RNS fluorescence intensity for different conditions.

4D

A375

Control (Lipofectamine)	Control (Lipofectamine)	Control (Nontarget siRNA)	siRNA (IL-1α)	siRNA (IL-1β)	siRNA (IL-1α + IL-1β)	siRNA (MyD88)
p53
p21
Phospho-p54
Phospho-p46 (SAPK/JNK)
Total SAPK/JNK
β-actin

WM793

Control (Lipofectamine)	Control (Nontarget siRNA)	siRNA (IL-1α)	siRNA (IL-1β)	siRNA (IL-1α + IL-1β)	siRNA (MyD88)
p53
p21
Phospho-p54
Phospho-p46 (SAPK/JNK)
Total SAPK/JNK
β-Actin
Figure 5

5A

Cell Viability (%)

- No antibody
- Goat IgG
- Anti-IL-1RI antibody

Melanocytes | A375 | WM793

5B

Cell Proliferation (%)

- Control (Lipofectamine)
- Control (Non-target siRNA)
- siRNA (IL-1α)
- siRNA (IL-1β)
- siRNAs (IL-1α + anti-IL-1β)
- siRNA (MyD88)
Figure 6

6A

A375

WM793

LC3-I

LC3-II

β-actin

6B

A375 Cells

1. Autophagy (6.14%)
2. Autophagy (7.41%)
3. Autophagy (17.47%)
4. Autophagy (21.83%)
5. Autophagy (29.89%)
6. Autophagy (11.31%)

FL1-H

FL3-H

1: Control (Lipofectamine)
2: Control (Nontarget siRNA)
3: siRNA (IL-1α)
4: siRNA (IL-1β)
5: siRNAs (IL-1α + IL-1β)
6: siRNA (MyD88)

6C

WM793 Cells

1. Autophagy (5.11%)
2. Autophagy (5.14%)
3. Autophagy (12.00%)
4. Autophagy (12.27%)
5. Autophagy (15.92%)
6. Autophagy (12.87%)

FL1-H

FL3-H

1: Control (Lipofectamine)
2: Control (Nontarget siRNA)
3: siRNA (IL-1α)
4: siRNA (IL-1β)
5: siRNAs (IL-1α + IL-1β)
6: siRNA (MyD88)
Figure 6

MeWo Cells

1. Autophagy (1.29%)
2. Autophagy (2.13%)
3. Autophagy (2.88%)
4. Autophagy (3.25%)
5. Autophagy (2.51%)
6. Autophagy (3.19%)

FL1-H

1: Control (Lipofectamine) 2: Control (Nontarget siRNA)
3: siRNA (IL-1α) 4: siRNA (IL-1β)
5: siRNAs (IL-1α + IL-1β) 6: siRNA (MyD88)
Constitutive Aberrant Endogenous Interleukin-1 Facilitates Inflammation and Growth in Human Melanoma

Yong Qin, Suhendan Ekmekcioglu, Ping Liu, et al.

Mol Cancer Res Published OnlineFirst September 27, 2011.