Suppression of Autophagy by FIP200 Deletion Impairs DNA Damage Repair and Increases Cell Death upon Treatments with Anticancer Agents

Heekyong Bae¹, and Jun-Lin Guan¹,²

Abstract

Autophagy is a lysosomal bulk degradation process for intracellular protein and organelles. FIP200 (200 kDa FAK-family interacting protein) is an essential component of mammalian autophagy that is implicated in breast cancer in recent studies. Here we show that inactivation of FIP200 resulted in deficient repair of DNA damage induced by ionizing radiation and anticancer agents in mouse embryonic fibroblasts (MEF). The persistent DNA damage correlated to increased apoptosis and reduced survival of FIP200 knockout (KO) MEFs after treatments with camptothecin (CPT), a topoisomerase I inhibitor and chemotherapeutic agent. Reexpression of FIP200 in FIP200 KO MEFs restored both efficient DNA damage repair and cell survival. Furthermore, knockdown of the increased p62 expression in FIP200 KO MEFs rescued the impaired DNA damage repair and CPT-induced cell death. In contrast, treatment of cells with N-acetyl cysteine did not affect these defects in FIP200 KO MEFs. Finally, FIP200 KO MEFs also showed deficient DNA damage repair and increased cell death compared with control MEFs, when treated with etoposide, a topoisomerase II inhibitor and another anticancer agent. Together, these results identify a new function for FIP200 in the regulation of DNA damage response and cell survival through its activity in autophagy and suggest the possibility of FIP200 or other autophagy proteins as a potential target for treatment to enhance the efficiency of cancer therapy using DNA damage–inducing agents.

Mol Cancer Res; 9(9); 1–10. ©2011 AACR.

Introduction

Autophagy is a conserved intracellular process for bulk degradation of proteins and organelles through the formation of the double membrane-bound vesicles called autophagosomes and their fusions with lysosomes (1, 2). It is induced in response to nutrient starvation and other stress conditions and functions to maintain cellular homeostasis by removing large protein aggregates and damaged organelles and recycling the degraded cellular components for macromolecular synthesis in these cells. Both basal and starvation-induced autophagy has been shown to play critical roles in a variety of physiologic and pathologic processes, including adaptive response to starvation, quality control of intracellular proteins and organelles, antiaging, suppression of tumor formation, antigen presentation, and elimination of intracellular microbes (3–7).

Previous studies have shown that autophagy can act both positively and negatively in cancer cells (8, 9). In response to various cellular stresses, activation of autophagy provides cellular protection by eliminating harmful cytosolic components/invading pathogens and maintaining energy balance. This prosurvival function of autophagy could promote tumor cell survival and growth in the tumor microenvironment of hypoxia and nutrient starvation. Indeed, pharmacologic or genetic inhibition of autophagy has been shown to sensitizes tumor cells to the cytotoxic effects of chemotherapy and ionizing radiation (IR) to enhance cancer treatments (10–15). On the other hand, defective autophagy has also been linked to increased tumorigenesis because monoallelic deletion of the mammalian autophagy gene beclin1 is frequently found in sporadic human breast cancers and ovarian cancers (16) and heterozygous deletion of beclin1-promoted spontaneous malignancies, including lung and liver cancers and lymphomas in mouse models (17–19). It was also shown that in apoptosis-defective cells, inhibition of autophagy caused by heterozygous loss of beclin1 or homozygous deletion of Atg5-induced accumulation of p62, damaged mitochondria, and reactive oxygen species (ROS), leading to genomic instability and tumorigenesis (14, 20, 21).
FIP200 (FAK-family Interacting Protein of 200 kDa) encodes a conserved protein characterized by a large coiled-coil region containing a leucine zipper motif, which was initially found through its interaction with focal adhesion kinase (FAK) and its related kinase Pyk2 (22, 23). Several recent studies identified FIP200 as a component of the ULK1-Atg13-FIP200 complex essential for induction of autophagy in mammalian cells (24–28). Earlier studies implicated a role of FIP200 in breast cancer as deletion of FIP200 gene was found in a fraction of primary mammary tumor samples (29) and overexpression of FIP200 inhibited cell-cycle progression in several breast cancer cell lines (30). However, we found recently that heterozygous deletion of FIP200 did not lead to development of mammary or any other tumors, whereas homozygous deletion resulted in embryonic lethality (31). Moreover, conditional knockout (KO) of FIP200 in mammary epithelial cells did not lead to spontaneous development of breast cancer (32), suggesting that, in contrast to the earlier suggestion (29, 30) and unlike the better characterized autophagy protein Beclin1 (17–19), FIP200 may not function as a suppressor for breast or other cancers. Thus, it also remains to be determined whether inactivation of FIP200 could lead to increased DNA damage and genomic instability which often associate with tumorigenesis, as observed in the deletion of several other autophagy proteins including Beclin1 (14, 20, 21).

In this study, we investigated the potential role of FIP200 in DNA damage repair and cell death upon various genotoxic treatments. We found that FIP200 deletion led to a significant decrease in DNA damage repair in response to IR as well as cancer chemotherapeutic agents camptothecin (CPT) and etoposide. FIP200-null cells also showed an increased sensitivity to cell death induced by CPT and etoposide, which correlated to the increased DNA damage of the cells. These studies also identified p62 as a critical mediator of FIP200 regulation of DNA damage repair and cell survival. These results imply FIP200 in maintaining normal cellular response to DNA damage and also provide support for the idea of targeting FIP200 or other autophagy proteins in combination with chemotherapy for cancer.

Materials and Methods

Cell cultures and reagents

Mouse embryonic fibroblasts (MEF) were cultured in Dulbecco’s modified Eagle’s medium from Gibco (Invitrogen) with 10% FBS (Atlanta Biologicals) and 100 U/mL penicillin–streptomycin, and incubated in 5% CO₂ incubator with 95% humidity at 37°C. All chemicals were purchased from Sigma (Sigma) unless otherwise specified. CPT and etoposide were dissolved in 100% dimethyl sulfoxide and stored at −20°C until use, and those treatments were not exceeded more than 0.1% (v/v) media. N-acetyl cysteine (NAC) and hydrogen peroxide (30% v/v) were freshly prepared daily to experimental concentrations in sterile water and filtrated and stored at 4°C.

Preparation of recombinant lentiviruses encoding p62 shRNA

pGIPZ lentiviral vectors (Open Biosystems) encoding p62 short hairpin RNA (shRNA) or a scrambled control shRNA were obtained from the shRNA core facility at the University of Michigan. For lentivirus packaging, we followed the calcium phosphate transfection method as described in manufacturer’s protocol (Open Biosystems). Efficient infection of the recipient cells by the recombinant lentiviruses was determined by green fluorescent protein (GFP) expression under an Olympus IX70 fluorescence microscope (Olympus).

Immunofluorescence

Immunofluorescent staining was done in accordance with the manufacturer’s protocol (Cell Signaling Technology). Briefly, cells were grown on coverslips and fixed in 4% formaldehyde for 15 minutes at room temperature after a rinse with PBS. Each coverslip in cell-side up position was rinsed 3 times in PBS for 5 minutes each and immersed in blocking buffer (5% normal goat serum and 0.3% Triton X-100 in PBS) for 60 minutes at room temperature. After blocking, cells were incubated overnight at 4°C or 2 hours at room temperature with anti-p62 (Enzo Life Sciences) or anti-γ H2AX (Cell Signaling Technology) rabbit primary antibody properly diluted in antibody dilution buffer (10% bovine serum albumin and 0.3% Triton X-100 in PBS). Rinsed 3 times in PBS for 5 minutes each, then coverslips were incubated with fluorescein isothiocyanate- and Texas red–conjugated goat anti-rabbit IgG secondary antibodies diluted in antibody dilution buffer for 1 hour at room temperature in dark. For nuclei counterstaining, 4′,6-diamidino-2-phenylindole (DAPI; Invitrogen) was used. Washed with 3 times with PBS for 5 minutes each, slides were mounted with Vectashield mounting medium (Vector) and examined under an Olympus BX41 microscope (Olympus).

Western blotting analysis

Cells were lysed with hot SDS lysis buffer (1% SDS, 1 mmol/L sodium orthovanadate, 10 mmol/L Tris pH 7.4) with a brief sonication. They were centrifuged at 13,000 rpm for 10 minutes at 4°C and the supernatant of each sample was collected. Equal amount of proteins were subjected to electrophoresis on 6% to 12% SDS-PAGE and transferred to nitrocellulose membranes for overnight at 25 V or 1 hour at 100 V. After transfer, membranes were blocked with 5% fat-free milk in TBST (0.1 mol/L Tris-HCl, pH 8.0, 0.9% (wt/vol) NaCl, 0.1% (vol/vol) Tween-20) for 1 hour at room temperature and incubated with primary antibodies in 5% fat-free milk TBST at 4°C overnight or for 1 hour at room temperature. And then, properly diluted horseradish peroxidase-conjugated secondary antibody was replaced and incubated for 1 hour at room temperature. After 3 × 10 minutes washing in TBST, chemiluminescence generated by ECL solution (Thermo Scientific) was captured by Foto/Analyst Luminary/FX systems (Fotodyne Inc).
Neutral comet assay

DNA strand break was analyzed by single-cell agarose gel electrophoresis under neutral conditions, as described previously (33). N1 neutral lysis buffer (2% Sarkosyl, 0.5 mol/L Na₂EDTA, 0.5 mg/mL proteinase K (pH 8.0) and N2 electrophoresis solution (90 mmol/L Tris buffer, 90 mmol/L boric acid, 2 mmol/L Na₂EDTA (pH 8.5) were used. Lysis was done in the 37°C incubator overnight. The images were analyzed for comet tail moment using CometScore software. At least 40 images were processed for each sample.

Clonogenic survival and cell viability and measurements

To determine clonogenic survival of cells after IR, cells (at about 70% confluence) were harvested immediately after irradiation and 500 cells were reseeded onto 100-mm culture dishes in triplicates. After 2 weeks, cell colonies were fixed by 6.0% glutaraldehyde and then stained with 0.5% crystal violet. The surviving fraction was calculated by counting the number of colonies compared with nonirradiated control.

Cell viability was determined by MTT (thiazolyl blue) assay, as described previously (34). Propidium iodide (PI) staining was also used to detect cell death. Briefly, cells were seeded into a 6-well plate and cultured at 37°C, 5% CO₂ until more than 60% confluency and then subjected to various treatments as described in the text. An amount of 2 µg/mL PI solution was directly added into medium and incubated for 10 minutes. The number of PI-positive cells was determined using an Olympus IX70 fluorescence microscope (Olympus).

Flow cytometric analysis of ROS

ROS generation was determined by staining with 2′,7′-dichlorofluorescein diacetate (DCFDA; Invitrogen) at 10 µmol/L for 15 minutes at 37°C, according to manufacturer’s instructions, followed by flow cytometry, as described previously (35).

Statistical analysis

Data are presented as means ± SEM and analyzed with SigmaStat v 3.1 (Jandel Scientific); P < 0.05 was considered significant.

Results

FIP200 deletion leads to defective repair of irradiation-induced DNA damage

To investigate a potential role of FIP200 in the DNA damage response, FIP200 KO and wild type control MEFs were subjected to IR to induce DNA damage. At various times after exposure to 10 Gy of IR, the cells were immunostained by antibodies against S139-phosphorylated...
H2AX (γH2AX), a marker for DNA double-strand break formation (36). As shown in Figure 1A and B, rapid induction of DNA damage was detected within 30 minutes in both control and FIP200 KO MEFs. In control MEFs, γH2AX signal was abolished at 24 hours after IR, indicating repair of the DNA damage as expected (37). In contrast, γH2AX signal remained in a substantial fraction of FIP200 KO MEFs. Furthermore, examination of the cells at 24 hours after IR under higher magnification showed sustained γH2AX foci in the nucleus of FIP200 KO MEFs but not control MEFs (data not shown). We next subjected the cells to a lower dose IR at 1.5 Gy and examined the individual foci per cell at various times after IR exposure. As shown in Figure 1C and D, similar level of DNA damage was induced by 1.5 Gy IR in both FIP200 KO and control MEFs. At 4 to 6 hours, approximately equal fractions of control MEFs contained 5 to 20 foci per cell and more than 20 foci per cell with a small fraction having less than 5 foci per cell, whereas the majority of FIP200 KO MEFs contained more than 20 foci per cell. By 12 hours, most of the control MEFs had less than 5 foci per cell, whereas significant fractions of FIP200 KO MEFs still contained 5 to 20 or more than 20 foci per cell. Double immunofluorescent staining showed colocalization of γH2AX and 53BP1 in the foci of the cells (Supplementary Fig. S1A), supporting that genuine DSBs were determined by γH2AX foci measurements. Furthermore, treatment of cells with an autophagy inhibitor 3MA also reduced the efficiency of DNA damage repair after IR (Supplementary Fig. S1), which is consistent with the idea that defective autophagy in FIP200 KO MEFs is responsible for the defective DNA damage repair.

To further investigate whether the increased DNA damage is caused by reduced DNA repair capacity, the extent of DNA damage by IR was measured by neutral comet assay with quantification by tail moment as described in Materials and Methods. Consistent with previous reports (38, 39), IR induced short-lived DNA double-stranded breaks that were repaired within 1 hour postincubation time after treatment with 10 Gy X-ray in control MEFs (Fig. 2A top panels and Fig. 2B). In contrast, these DNA breaks persisted beyond 1 hour after postincubation time (Fig. 2A bottom panels and Fig. 2B) and only reduced to almost undetectable level by 5 hours after resting (data not shown) in FIP200 KO MEFs after the same dose of IR. Consistent with the reduced DNA damage repair, FIP200 KO MEFs also showed a dose-dependent decrease in viability after IR compared with control MEFs (Fig. 2C). Taken together, these results show that inhibition of autophagy by FIP200 deletion resulted in defective DNA damage repair and reduced cell survival in response to irradiation.

Reduced DNA damage repair leads to increased cell death in FIP200 KO cells

Deficiency in DNA damage repair could lead to genomic instability resulting in tumorigenesis (40), but excessively increased DNA damage may also lead to increased cell death, which is exploited for chemotherapy by DNA damage inducing drugs (41). To further study the role of FIP200 in DNA damage repair and cell survival, FIP200 KO and control MEFs were treated with the chemotherapeutic agent CPT, a topoisomerase I inhibitor that can induce DNA damage and cell death (42). At various times after treatment with 5 μmol/L CPT, lysates were prepared from control and FIP200 KO MEFs and analyzed by
Western blotting using antibodies against γH2AX. As shown in Figure 3A, induction of DNA damage was detected within 30 minutes and reached to maximal levels by about 4 hours after CPT stimulation in both control and FIP200 KO MEFs. In control MEFs, the γH2AX level then gradually decreased to undetectable level by 10 hours after treatment, indicating repair of the DNA damage as expected (37). In contrast, the γH2AX level remained high and only started to decrease at 15 hours after CPT treatment in FIP200 KO MEFs, suggesting a defect in the repair of CPT-induced DNA damage in these cells. Analysis of the samples from 0.5 to 4 hours after CPT treatment indicated similarly increased levels of DNA-PK or ATR phosphorylation between FIP200 KO and control MEFs (Supplementary Fig. S2), suggesting that FIP200 deletion did not affect the cellular sensing of DNA damage or the phosphorylation of H2AX by ATR or DNA-PK (although ATM was not studied here), but rather only reduced DNA damage repair.

The possible defective DNA damage repair in FIP200 KO MEFs was also assessed by immunofluorescent staining of anti-γH2AX antibodies. As shown in Figure 3B, DNA damage was rapidly induced in the nuclei of majority of control and FIP200 KO MEFs within 1 hour of CPT treatment (middle panels). Consistent with results from Western blotting analysis, γH2AX signal was abolished in control MEFs but was still present in a significant fraction of FIP200 KO MEFs, at 18 hours after CPT treatments (bottom panels). Furthermore, microscopic examination of the cells under higher magnification showed the presence of individual γH2AX foci in the nuclei of both cells in the earlier time point, but only FIP200 KO MEFs at the later time point (Fig. 3C). Together, these results indicated that deletion of FIP200 also resulted in defective DNA damage repair after CPT treatment.

We next examined the effect of reduced DNA damage repair upon deletion of FIP200 on cell survival in response

Figure 3. Analysis of DNA damage repair and cell survival in FIP200 KO MEFs after CPT treatment. A, control and FIP200 KO MEFs were treated with 5 μmol/L CPT for various times, as indicated. The cells were then lysed and analyzed by Western blotting using anti-γH2AX or anti-β-actin antibodies. B and C, control and FIP200 KO MEFs were treated with mock (UT) or 5 μmol/L CPT for 1 or 18 hours as indicated. They were then fixed and immunostained with anti-γH2AX antibodies and DAPI (B). In C, the cells were viewed under higher magnification to visualize individual foci. The percentage of cells with more than 5 foci per cell was determined. Representative images are shown on the left and Mean ± SEM from 3 experiments is shown on the right. *p < 0.05. D and E, the percentage of dead cells at 48 hours after treatment with 5 μmol/L CPT are determined by PI staining (D) and the cell viability was measured by MTT assay (E). Mean ± SEM from 3 experiments is shown. *p < 0.05.
to CPT. As reported previously (43), treatment of control MEFs by CPT induced cell death by apoptosis of these cells, as measured by PI staining (Fig. 3D) as well as apoptosis assay kit for DNA fragmentation (Supplementary Fig. S3). Interestingly, significantly more cell death and apoptosis were found for FIP200 KO MEFs after treatment with the same amount of CPT, suggesting an elevated sensitivity to CPT-induced apoptosis compared with control MEFs. The reduced survival of FIP200 KO MEFs after CPT treatment in comparison with control MEFs was also verified by MTT assays (Fig. 3E).

To further show that FIP200 deletion is responsible for the impaired DNA damage repair and consequent increase in cell death induced by CPT, we examined the effects of restoration of FIP200 expression in FIP200 KO MEFs by infection of recombinant adenoviruses encoding GFP or GFP-FIP200 fusion protein (FIP200) for 2 days, as indicated. A, the cells were then treated with or without 5 μmol/L CPT for 18 hours. The lysates were prepared and analyzed by Western blotting using various antibodies as indicated. B, the infected cells were treated with 5 μmol/L CPT for 18 hours and then examined by immunofluorescence using various antibodies as indicated. C, the infected cells were incubated with 5 μmol/L CPT for 48 hours and then cell viability was measured by MTT assay, as described in Figure 3E. *, P < 0.05.

Figure 4. FIP200 reexpression rescues impaired DNA damage repair and cell survival in FIP200 KO MEFs. FIP200 KO MEFs were infected by recombinant adenoviruses encoding GFP or GFP-FIP200 fusion protein (FIP200) for 2 days, as indicated. A, the cells were then treated with or without 5 μmol/L CPT for 18 hours. The lysates were prepared and analyzed by Western blotting using various antibodies as indicated. B, the infected cells were treated with 5 μmol/L CPT for 18 hours and then examined by immunofluorescence using various antibodies as indicated. C, the infected cells were incubated with 5 μmol/L CPT for 48 hours and then cell viability was measured by MTT assay, as described in Figure 3E. *, P < 0.05.

Increased p62 expression upon FIP200 deletion may be responsible for the reduced DNA damage repair and cell survival

FIP200 has been identified as a key component of autophagy and its deletion has been shown to block autophagosome formation and induce p62 accumulation in mammalian cells (25). Consistent with these previous results, immunofluorescent analysis of FIP200 KO and control MEFs detected significant amount of p62-positive aggregates in FIP200 KO MEFs, whereas little p62 staining was found in control MEFs (Fig. 5A). The increased p62 expression in FIP200 KO MEFs was also shown by Western blotting analysis of the lysates (Fig. 5B). Moreover, reexpression of FIP200, but not GFP as a control, in FIP200 KO MEFs significantly reversed the increase in p62 expression, indicating that defective autophagy upon FIP200 deletion caused accumulation of p62 in these cells.

We next examined the potential role of the increased p62 expression in the reduced DNA damage repair and cell survival by employing lentiviral shRNA to deplete p62 in FIP200 KO MEFs. As shown in Figure 5C, transient transfection of FIP200 KO MEFs by lentiviral vectors encoding shRNA targeting 2 different p62 sequences both reduced the expression of p62 in these cells. Interestingly, knockdown of p62 expression restored efficient repair of DNA damage induced by CPT in FIP200 KO MEFs, as measured by the level of γH2AX at 18 hours after CPT treatment.
treatment of these cells (Fig. 5D). Furthermore, the increased sensitivity of FIP200 KO MEFs to CPT-induced cell death was also rescued (Fig. 5E). Finally, knockdown of p62 also partially rescued the defective DNA damage repair and reduced cell viability in FIP200 KO MEFs as indicated (Supplementary Figs. S4 and S5). Together, these results suggested that increased p62 expression caused by deficient autophagy due to FIP200 deletion may be responsible for the defective DNA damage repair and consequent increase in cell death following CPT treatment.

Oxidative stress response has no effect on impaired DNA damage repair in FIP200-deficient cells

Defective autophagy upon deletion of several autophagy genes, including FIP200, has been shown to result in increased ROS production in various cells (44, 45). More interestingly, a recent study showed that suppression of ROS accumulation reduced DNA damage in metabolically stressed autophagy-defective tumor cells (20). We therefore examined whether FIP200 KO MEFs exhibit increased ROS that could also contribute to the defective DNA damage repair and increased cell death induced by CPT. As shown in Figure 6A and B, markedly increased ROS was detected in FIP200 KO MEFs compared with control MEFs after CPT treatment as measured by DCFDA staining, although no significant difference was found between these 2 cell types without treatment. As expected, the addition of the ROS scavenger, NAC, reversed the increased ROS level in FIP200 KO MEFs. Surprisingly, however, the presence of NAC during CPT treatment did not affect the increased H2AX signal at 18 hours after stimulation by CPT (Fig. 6C). Moreover, NAC did not reduce CPT-induced cell death in FIP200 KO MEFs (Fig. 6D). The scavenger effectiveness of NAC was verified by the rescue of cell death after H2O2 treatment (Supplementary Fig. S6). These results suggested that oxidative stress induced by autophagy deficiency does not significantly affect CPT-induced DNA damage and cell death in FIP200 KO MEFs.

Reduced DNA damage repair and cell survival of FIP200 KO MEFs in response to etoposide

To further evaluate the role of FIP200 in DNA damage repair and cell survival, we examined the responses of FIP200 KO and control MEFs to etoposide, which is another important chemotherapeutic agent that induces double-stranded DNA break through inhibition of topoisomerase II (46, 47). At 24 hours after treatment with etoposide, lysates were prepared and analyzed for DNA damage by Western blotting. Similar to our observations of cells treated by CPT, a significant level of γH2AX was found in FIP200 KO MEFs but not in control MEFs (Fig. 7A), suggesting a reduced DNA damage repair upon FIP200 deletion. In consistent with these results, we also observed an increased cell death induced by etoposide in FIP200 KO MEFs compared with control MEFs (Supplementary Fig. S7). Knockdown of p62 by shRNA partially reversed etoposide-induced cell death of FIP200 KO MEFs (Fig. 7B). In contrast, suppression of ROS by NAC had little effect on the survival of these cells in response to etoposide treatment (Fig. 7C). These results provide support that deletion of FIP200 reduces DNA damage repair and cell survival in response to both double-stranded (by etoposide) and single-stranded (by CPT) DNA breaks in a p62-dependent but ROS-independent manner.

Discussion

Increasing evidence indicates intimate connections between autophagy and its abnormalities and cancer de-
opment and progression because the seminal discovery of Beclin 1, a haploinsufficient tumor suppressor, as a key component of autophagy (17–19). Remarkable advance has been made in recent years, which revealed the molecular mechanisms of Beclin 1 haploinsufficiency or inactivation of other autophagy proteins to promote tumorigenesis through increased accumulation of p62 and genomic instability (14, 20, 21). Interestingly, initial identification and earlier studies of FIP200 also suggested it as a putative tumor suppressor (29, 30), and more recent data showed FIP200 in a complex with ULK1/2 and Atg13 that are essential for autophagy induction (24, 26–28). Unlike Beclin 1, however, FIP200 inactivation in mouse models did not result in spontaneous development of breast cancer or augment lymphomagenesis induced by p53 deletion (32). These results question the earlier suggestion of FIP200 as a putative tumor suppressor and also highlight the potential complex role of autophagy in tumor development and progression (8, 9). Data presented here indicate that, contrary to a potential tumor suppression function, inactivation of FIP200 and subsequent deficiency in autophagy led to increased cell death upon stimulation with chemotherapeutic agents CPT and etoposide, thus may be exploited to enhance cancer treatments instead.

Our results are consistent with a number of previous reports that autophagy provides cell survival mechanism under different conditions and inhibition of autophagy sensitizes cells to various apoptosis-inducing agents (10–15). Moreover, our analysis suggested that defective DNA damage repair in FIP200-null cells may be responsible for the increased cell death. In contrast to the transient increase of γH2AX in control MEFs, FIP200 KO MEFs exhibited a more sustained γH2AX signal as measured by both Western blotting and nuclei foci staining upon treatment with CPT or etoposide as well as IR. Furthermore, reexpression of FIP200 rescued defective DNA damage repair and the increased cell death. These results provide a plausible mechanism for the increased sensitivity to chemotherapy in autophagy-defective cells observed here and in previous studies (10–15).

The mechanisms by which FIP200 deletion lead to the defective DNA damage repair are not well understood at present. Previous studies suggested a role of p62 accumulation in the increased genomic instability upon inhibition of autophagy in beclin1−/− or atg5−/− cells that are defective in apoptosis (20). Interestingly, we also observed upregulated p62 expression and p62-containing aggregates in FIP200 KO MEFs. Furthermore, reexpression of FIP200 in these cells suppressed p62 expression as well as CPT-induced cell death. Finally, the direct inhibition of p62 expression using RNA interference also markedly suppressed sustained γH2AX signal and cell death induced by CPT or etoposide. These results suggested that, consistent with previous studies (20), upregulated p62 expression caused by FIP200 deletion and autophagy deficiency could mediate the reduced DNA damage repair in FIP200 KO MEFs. In contrast to the increased tumorigenesis in the apoptosis-deficient cells in previous studies (14, 20, 21), however, the sustained DNA damage likely contributed to
was measured by MTT assay, as described in Figure 3E. *, and then treated with or without 25 μmol/L etoposide for 2 days. Cell viability was measured by MTT assay, as described in Figure 3E.

FIP200 KO MEFs were pretreated with 2 mmol/L NAC for 45 minutes and then incubated with 25 μmol/L etoposide for 2 days. Cell viability was measured by MTT assay, as described in Figure 3E.

Figure 7. Analysis of DNA damage repair and cell survival in response to etoposide. A, control and FIP200 KO MEFs were stimulated with 25 μmol/L etoposide for 24 hours. Cell lysates were prepared and analyzed by Western blotting using various antibodies as indicated. B, FIP200 KO MEFs were infected by recombinant lentiviruses encoding shRNA targeting p62, or a scramble sequence as a control along with a puromycin-resistant marker, as indicated. The infected cells were selected in 5 μg/mL puromycin for 2 days and then treated with or without 25 μmol/L etoposide for 2 days. Cell viability was measured by MTT assay, as described in Figure 3E. * P < 0.05. C, FIP200 KO MEFs were pretreated with 2 mmol/L NAC for 45 minutes and then incubated with 25 μmol/L etoposide for 2 days, as indicated. Cell viability was measured by MTT assay, as described in Figure 3E.

the increased cell death in FIP200 KO MEFs due to their intact apoptosis mechanisms.

How does then upregulated p62 expression impair DNA repair system? p62 is known to localize primarily in the cytoplasm as a cargo protein of ubiquitinated proteins for the autophagic degradation (48). However, a recent report showed that p62 has nuclear localization signals and a nuclear export signal, which allow it to shuttle between the cytoplasm and the nucleus, and that p62 is required for polyubiquitinated protein interaction with promyelocytic leukemia (PML) nuclear bodies (49). PML nuclear bodies are involved in DNA damage repair as they contain several DNA damage response proteins such as BLM/WRN DNA helicases, the Mre11 complex, or TopBP1 (50). Although these considerations suggest a potential direct connection between p62 and DNA damage repair processes in the nuclei, we did not detect any significant relocalization of p62 after CPT treatment in FIP200 KO or control MEFs. Given its function as a scaffolding protein, it is also likely that increased expression of p62 in the cytoplasm may influence DNA damage repair through its interactions with multiple other proteins in an indirect manner (48).

In addition to the increased p62 expression, the increased ROS production in autophagy deficient cells is also suggested to mediate increased DNA damage in previous studies (21). These studies also suggested a possible amplification loop between ROS and p62 in promoting genomic instability and tumorigenesis. Indeed, we also observed increased ROS production in hematopoietic cells after FIP200 deletion in recent studies (44). Surprisingly, however, NAC treatment did not significantly reverse the deficient DNA damage repair or increased cell death in FIP200 KO MEFs compared with control MEFs. The discrepancy between these studies and the previous studies employing apoptosis defective cells with deficiency in other autophagy proteins remains to be further investigated. It is also interesting to note that whereas previous studies showed that loss of autophagy survival promoted tumor growth (20, 21), deletion of FIP200 in mammary epithelial cells did not lead to spontaneous development of breast cancer (32). Thus, future studies will also be directed at the potential contribution of the defective DNA damage repair after FIP200 inactivation in tumor development and progression in vivo.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Dr. Benjamin Chen of UT Southwestern Medical School and Dr. Xiaochun Yu of University of Michigan for discussions, reagents, and help throughout this project, as well as critical reading of the manuscript and helpful comments. We also thank members of Guan laboratory for critical reading of the manuscript and their suggestions.

Grant Support

This research work was supported by NIH grants GM052890 and CA150926 to J-L. Guan.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 25, 2011; revised July 6, 2011; accepted July 23, 2011; published OnlineFirst August 1, 2011.

References

Suppression of Autophagy by FIP200 Deletion Impairs DNA Damage Repair and Increases Cell Death upon Treatments with Anticancer Agents

Heekyong Bae and Jun-Lin Guan

Mol Cancer Res Published OnlineFirst August 1, 2011.

Updated version Access the most recent version of this article at: doi:10.1158/1541-7786.MCR-11-0098
Supplementary Material Access the most recent supplemental material at: http://mcr.aacrjournals.org/content/suppl/2011/08/02/1541-7786.MCR-11-0098.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.