Repression of Human Telomerase Reverse Transcriptase Using Artificial Zinc Finger Transcription Factors

Joon Hyung Sohn1,4, Byung-II Yeh1,2,3, Jong-Whan Choi1,2, Joonho Yoon1, Jun Namkung1, Kwang-Kyun Park4, and Hyun-Won Kim1,2

Abstract

Telomerase activation is a key step in the development of human cancers. Expression of the catalytic subunit, human telomerase reverse transcriptase (hTERT), represents the limiting factor for telomerase activity. In this study, we have used artificial zinc finger protein (ZFP) transcription factors (TF) to repress the expression of hTERT in human cancer cell lines at the transcriptional level. We have constructed four-fingered ZFPs derived from the human genome which binds 12-bp recognition sequences within the promoter of the \textit{hTERT} gene and fused them with a KRAB repressor domain to create a potent transcriptional repressor. Luciferase activity was decreased by >80% in all of the transcriptional repressors with luciferase reporter assay. When they were transfected into the telomerase-positive HEK293 cell line, a decrease of mRNA level and telomerase activity together with shortening of telomere length was observed. Actual growth of HEK293 cells was also inhibited by transection of artificial ZFP-TFs. The repression was maintained for 100 days of culture. The repression of telomerase expression by artificial ZFP-TFs targeting the promoter region of the \textit{hTERT} presents a new promising strategy for inhibiting the growth of human cancer cells. \textit{Mol Cancer Res}; 8(2); 246–53. ©2010 AACR.

Introduction

A key property of malignant tumors is their immortality or limitless replicative potential (1). It is believed that the maintenance of telomeres is essential for the immortality of cancer cells. Telomeres are maintained by a specialized reverse transcriptase, the ribonucleoprotein telomerase, which is composed of a ubiquitously expressed RNA subunit, human telomerase RNA component (hTERC; ref. 2), and a protein catalytic subunit, human telomerase reverse transcriptase (hTERT), the expression of which is highly regulated (3, 4). The expression of hTERT represents the limiting factor for telomerase activity. Therefore, the regulation of hTERT at the transcriptional level could be an effective method for cancer regulation.

Promoter characterizations of the \textit{hTERT} gene have been previously described (5-7). It has been suggested that the \textit{hTERT} core promoter, encompassing the proximal 283 bp region upstream of the initiation ATG codon, is essential for transcriptional activation (Fig. 1A; ref. 8). A large number of transcription factors act on the promoter of \textit{hTERT} such as SP1 (6), c-MYC (9), the estrogen receptor (10), E2F-1 (11), WT-1 (12), and MZF-2 (13). These have been reviewed in recent investigations (14, 15).

The Cys2-His2 class of zinc finger protein (ZFP) is the most common DNA-binding motif in the human genome and provides an ideal scaffold for designing artificial transcription factors (TF) with novel DNA sequence specificities. Due to their modular nature, zinc fingers could be used like molecular building blocks to create multi-finger domains recognizing extended DNA sequences (16).

Various artificially engineered ZFPs with DNA-binding specificities were created by using phage display (17, 18). These ZFPs could be used as modular building blocks in the construction of sequence-specific DNA-binding proteins. Fusion of these ZFPs with transcriptional repression domains or activation domains could generate potent transcriptional repressors or transcriptional activators controlling endogenous human genes as well as plant and viral genes (19-24). ZFPs could also be isolated by screening, in yeast, plasmid libraries that encode zinc fingers derived from human genomes (25). Unlike ZFPs using phage display in which mutations were incorporated at key positions in a given zinc finger framework, ZFPs with sequences in the human genome could be used intact as wild-type, and were revealed to be more natural and efficient for regulating human endogenous gene expression than those selected \textit{in vitro} using phage display.

Telomerase is activated in a variety of tumors, and only few tumors maintain telomeres by an alternative mechanism which relies on recombination (26-28). In
contrast to normal somatic cells, telomerase is highly reactivated in cancer cells. Thus, telomerase could be an important target in developing new anticancer agents. Many recent strategies have been targeting telomerase inhibition (15, 29-31).

In this study, we have artificially constructed four-fingered ZFPs using the domains derived from the human genome, which bind 12 bp recognition sequences within the core promoter of the endogenous hTERT gene (Fig. 1A). We have created a potent transcriptional repressor domain by fusing these ZFPs with a KRAB repressor domain (Fig. 1B). Our results show that the artificial ZFP-TFs technology could provide a new efficient method of hTERT inhibition.

Materials and Methods

Plasmid Construction

The cloning of ZFP-TFs has been previously described (32, 33). The amino acid sequences of six ZFPs are: NH₃-[F-97R], NH₃-[F-105R], NH₃-[F-122R], NH₃-[F-123R], NH₃-[F-124R], NH₃-[F-135R], NH₃-[F-143R]. The fusion proteins were purified from plasmids encoding firefly luciferase reporter vector. Then, inserted DNA was amplified by nested PCR using GC-rich PCR system (Roche) from HeLa Genomic DNA. The primer sequences used for the first PCR were 5'-CAA TGC CTC GTC GGG TTC GTG CTC C-3' (forward) and 5'-TCT CCG CAT GCT GCT GGT TCC C-3' (reverse), and for the second PCR were 5'-GGG GTA CCC GGG AGC AGC TGC GCT GT-3' (forward) and 5'-CAT GCC ATG CCG GGG TGG CCG C-3' (reverse). The construct was named pGL3-hTERT. Each construct was purified by Miniprep Kits (Qiagen) and confirmed by sequencing (Genotech).

Cell Culture and Transfection of HEK293 Cells

HEK293 cells (American Type Culture Collection) were maintained in DMEM supplemented with 100 units/mL of penicillin, 100 mg/mL of streptomycin, and 10% fetal bovine serum (all from Life Technologies) at 37°C in a 5% CO₂ humidified incubator. For transient transfections, HEK293 cells (2 × 10⁵ cells/well) were precultured for 24 h in 96-well culture plates (Becton Dickinson) that contained 100 μL of the medium described above without antibiotics. For some experiments, 10⁴ cells per well were cultivated in 24-well culture plates. Unless otherwise indicated, the HEK293 cells were transfected with a nucleic acid mixture at a total amount of 320 ng (for 96-well culture plates) or 1 μg (for 24-well culture plates). The nucleic acid mixtures contain effector plasmids encoding ZFPs (Fig. 1B), reporter plasmids encoding firefly luciferase (pGL-4T2), and internal control Renilla luciferase (pRL-SV40; Promega). Transfection was done with the LipofectAMINE 2000 reagent (Invitrogen) according to the instructions of the manufacturer.

Electrophoretic Mobility Shift Assay

ZFPs in pGEX-4T2 were then expressed in Escherichia coli strain BL21 (DE3) as fusion proteins linked to glutathione-S-transferase. The fusion proteins were purified using glutathione affinity chromatography (Amersham Pharmacia) and the connection between the glutathione-S-transferase moiety and the ZFPs was digested with thrombin. Probe DNAs were synthesized, annealed, and labeled with ³²P using T4 polynucleotide kinase. Next, electrophoretic mobility shift assays were carried out as described previously (25, 32).

Luciferase Assay

After incubation at 37°C for 48 h after transfection, cultured cells were washed twice with PBS and mixed with passive lysis buffer (30 μL; Promega). Firefly and Renilla luciferase activities in the cell lysates were measured in dual wavelength in a MicroLumatPlus LB96 luminometer (Berthold) after sequential addition of the LAR II reagent (40 μL), stop buffer (40 μL), and the Glo reagent to the lysates (8 μL). The Dual-luciferase reporter assay kit was purchased from Promega. To compare the results, the mean values of relative luciferase activity were used. The levels of the different constructs were
compared with the level of the pGL3-hTERT and to the level of the pGL3-basic vector.

Quantification of hTERT mRNA

For the reverse transcription-PCR analysis, 2 x 10^5 HEK293 cells per well were precultured at 37°C in a humid atmosphere containing 5% CO₂ for 24 h in 24-well plates containing culture medium (0.5 mL; supplemented with 10% fetal bovine serum without antibiotics). Transfection was done with the LipofectAMINE 2000 reagent (Invitrogen) according to the instructions of the manufacturer. The cells were harvested for reverse transcription-PCR analysis and telomere repeat amplification protocol (TRAP) assay. RNA was extracted with the RNeasy mini kit (Qiagen) according to the instructions of the manufacturer. The reverse transcription reactions were done with 100 ng of total RNA using QuantiTect reverse transcription kit (Qiagen). To analyze mRNA quantities, 1 μL of the cDNAs generated from the reverse transcription reactions were amplified using hTERT-specific primers [5'-GCG GAA GAC AGT GAA CT-3' (forward) and 5'-AGC TGG AGT AGT CGC TCT GC-3' (reverse)].
The specific hTERT mRNA amounts were normalized to the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA quantities calculated by specific amplification using primers \([5'-CAA\ TGA\ CCC\ CTT\ CAT\ TGA\ CC-3']\) (forward) and \([5'-GAT\ CTC\ GCT\ CCT\ GGA\ AGA\ TG-3']\) (reverse). Amplification of hTERT-specific and GAPDH-specific cDNAs was monitored and analyzed with Quantitect SYBR Green PCR kit (Qiagen) and Rotorgene 3000 Real-time Cycler (Corbett Research). Calculations of relative expression levels were done using the \(2^{-\Delta\Delta Ct}\) method (34), by normalizing to GAPDH expression levels.

Telomerase Activity Assay

Telomerase activity in cell lysates was measured by TRAP assay (26) using TRAPEZE telomerase detection kit (Chemicon) according to the instructions of the manufacturer. PCR products were separated by electrophoresis on 12.5% nondenaturing polyacrylamide gels, which were stained with SYBR Green (Molecular Probes). TSR8 and CHAPS lysis buffer (provided in the TRAPEZE kit) were used as positive and negative controls, respectively. Telomerase activity was semiquantified by normalizing the band intensities of the characteristic 6 bp telomerase-specific ladder to those of the 36 bp internal standard using NIH ImageJ software.

Cell Proliferation Assay

Colorimetric cellular proliferation assay was done using Cell Counting Kit-8 (Dojindo) according to the instructions of the manufacturer. Absorbance at 450 nm was measured using VersaMax microplate reader (Molecular Devices). To compare the results, the mean values of relative proliferation rates were used. The levels of the different constructs were compared with the level of the pcDNA3-null vector and HEK293 cell.

Telomere Length

Telomere restriction fragment length was determined using the Telo-TAGGG-Telomere Length Kit (Roche), following the instructions of the manufacturer. Genomic DNA was isolated from the pellets of cells grown in culture for 100 d using QIAamp DNA Mini Kit (Qiagen) and separated on a 0.8% agarose gel in 1× TAE buffer.

Results

Target DNA Binding Specificity and Affinity of the Artificial ZFP-TFs

Using zinc finger domains with sequences from the human genome, six four-fingered ZFPs targeting 12-bp sequences (Table 1) could be generated at the −197, −153, −122, −105, −97, and −5 upstream regions of the ATG initiation codon in the core promoter of hTERT (Fig. 1A). When each ZFPs was incubated with labeled probe containing target sequences, only the protein-binding probes showed shifted bands, confirming the specificities of each artificial ZFP (Fig. 1B-D). Dissociation constant \(K_d\) values of F-197R, F-153R, F-122R, F-105R, F-97R, and F-5R were 7.5, 8.4, 4.5, 26.3, 14.8, and 28.7 pmol/L, respectively, indicating much higher affinity among each value than in the case of the widely used three-fingered ZFPs the \(K_d\) values of which were 0.01 to 10 nmol/L (25).

Our results suggested that the four-fingered artificial ZFP-TFs, which recognize 12-bp DNA sequences, could be a novel tool for the regulation of the target gene at the transcriptional level.

Suppression of Reporter Gene Expression by Artificial ZFP-TFs

To examine the efficiency of the artificial ZFP transcriptional repressor in regulating genes, we used the firefly luciferase reporter gene under the hTERT core promoter. We developed a new reporter plasmid that contains a well-characterized hTERT core promoter (Fig. 2A). HEK293 cells were cotransfected with pGL3-hTERT (luciferase reporter plasmid) containing the appropriate ZFP binding site. Luciferase reporter pGL3-basic is a promoterless and enhancerless vector. For luciferase activity assay control, the pGL3-hTERT luciferase reporter vector was generated by the insertion of the hTERT core promoter, 334 bp upstream of the initiation ATG codon. For cloning of the hTERT core promoter, hot-start, touchdown, GC-rich, and nested PCRs were done using HeLa Genomic DNA. B, reporter vectors and ZFP-TFs expression vectors were cotransfected in HEK293 cells. After incubation for 48 h, luciferase activity assays were done. Negative control (NC) was done by ZFP-TF expression vector which does not target the hTERT core promoter. Graphs indicate the mean values and SEs of three independent experiments.

FIGURE 2. Effect of artificial ZFP-TFs on luciferase production driven by the hTERT core promoter. A, schematic representation of the reporter plasmid. Luciferase reporter pGL3-basic is a promoterless vector. For luciferase activity assay control, the pGL3-hTERT luciferase reporter vector was generated by the insertion of the hTERT core promoter, 334 bp upstream of the initiation ATG codon. For cloning of the hTERT core promoter, hot-start, touchdown, GC-rich, and nested PCRs were done using HeLa Genomic DNA. B, reporter vectors and ZFP-TFs expression vectors were cotransfected in HEK293 cells. After incubation for 48 h, luciferase activity assays were done. Negative control (NC) was done by ZFP-TF expression vector which does not target the hTERT core promoter. Graphs indicate the mean values and SEs of three independent experiments.
sites, together with pcDNA3 (expression plasmid) which expresses ZFPs fused with KRAB transcriptional repression domain. The high luciferase activity of pGL3-hTERT remarkably decreased when appropriate ZFPs which could bind to hTERT core promoter were expressed. F-197RK, F-153RK, F-122RK, F-105RK, F-97RK, and F-5RK showed 94.5%, 86.2%, 94.7%, 86.8%, 87.8%, and 79.2% repression, respectively, of the hTERT core promoter activated transcription of the luciferase gene (Fig. 2B). These data indicate that all of the ZFP-TFs designed in this experiment specifically bound within the promoter and actually repressed the expression of target gene at the cellular level.

Artificial ZFP-TFs Suppressed Endogenous hTERT Gene Expression, Reduction of Telomerase Activity, and Inhibition of Cell Proliferation

To achieve the transcriptional repression of endogenous hTERT gene expression, six ZFPs with specificities to the core promoter of hTERT were fused to the nuclear localization signal and the KRAB transcriptional repression domain (Fig. 1B). HEK293 cells were transfected using pF-197RK, pF-153RK, pF-122RK, pF-105RK, pF-97RK, and pF-5RK, and pcDNA3-null vector (control), respectively. Transfected cells were maintained in medium with 500 μg/mL of G-418 antibiotics. Selected cells were harvested at 2, 4, 8, and 12 days after transfection. Endogenous hTERT mRNA quantities measured by real-time reverse transcription-PCR were reduced as the time of culture increased (Fig. 3A). 2−ΔΔCt values of the pF-197RK, pF-153RK, pF-122RK, pF-105RK, pF-97RK, and pF-5RK were 0.285, 0.205, 0.219, 0.331, 0.243, and 0.219, respectively, when measured at 12 days passage, indicating stable repression of endogenous hTERT by artificial ZFPs.

Stable Repression of Endogenous bTERT

To achieve the transcriptional repression of endogenous bTERT gene expression, six ZFPs with specificities to the core promoter of bTERT were fused to the nuclear localization signal and the KRAB transcriptional repression domain (Fig. 1B). HEK293 cells were transfected using pF-197RK, pF-153RK, pF-122RK, pF-105RK, pF-97RK, and pF-5RK, and pcDNA3-null vector (control), respectively. Transfected cells were maintained in medium containing 100 μg/mL of G-418–selective antibiotics. The inhibition of bTERT mRNA (Fig. 4A) and telomerase activity (Fig. 4B) persisted for up to 100 days in the culture, indicating stable repression of endogenous bTERT by ZFP-TFs.

Artificial ZFP-TFs Shorten Telomere Length

Analysis of terminal restriction fragments by Southern blotting showed that the telomere lengths observed in control pcDNA3-null vector were 4.8 kb, similar to that of parental HEK293 cells. In contrast, telomere lengths in pF-197RK, pF-153RK, pF-122RK, pF-105RK, pF-97RK, and pF-5RK were all shortened, with lengths of 3.5, 3.1, 3.9, 3.0, 3.1, and 3.2 kb, respectively, measured at 100 days after transfection (Fig. 4C). These observations indicate that stable suppression of bTERT by artificial ZFP-TFs functionally inhibits telomerase activity and shortens telomere length in human cancer cells.

Discussion

We have designed four-fingered ZFP-TFs targeting the bTERT promoter region using zinc finger domains naturally

Table 1. Binding sites and identity of ZFPs used in hTERT repression

<table>
<thead>
<tr>
<th>ZFP</th>
<th>Binding positions*</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>Target DNA sequence (from 5′ to 3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-197RK</td>
<td>−197R†</td>
<td>QSHR2‡</td>
<td>QSSR1</td>
<td>RSHR</td>
<td>QSNR3</td>
<td>GAA GGG GCA GGA</td>
</tr>
<tr>
<td>F-153RK</td>
<td>−153R</td>
<td>RDER1</td>
<td>RSHR</td>
<td>CSNR1</td>
<td>RDHT</td>
<td>CGG GAC GGG GGG</td>
</tr>
<tr>
<td>F-122RK</td>
<td>−122R</td>
<td>RSHR</td>
<td>VSTR</td>
<td>RSHR</td>
<td>RSNR</td>
<td>GAG GGG GCT GGG</td>
</tr>
<tr>
<td>F-105RK</td>
<td>−105R</td>
<td>RHT</td>
<td>RSHR</td>
<td>VSTR</td>
<td>RSHR</td>
<td>GGG GCT GGG AGG</td>
</tr>
<tr>
<td>F-97RK</td>
<td>−97R</td>
<td>RSHR</td>
<td>RSNR</td>
<td>RSHR</td>
<td>QSNR3</td>
<td>GAA GGG GAG GGG</td>
</tr>
<tr>
<td>F-5RK</td>
<td>−5R</td>
<td>RSHR</td>
<td>DSCR</td>
<td>RDER1</td>
<td>RSHR</td>
<td>GGG GTG GCC GGG</td>
</tr>
<tr>
<td>NC</td>
<td>−</td>
<td>RSHR</td>
<td>RSHR</td>
<td>RSHR</td>
<td>RSHR</td>
<td>GGG GGG GGG GGG</td>
</tr>
</tbody>
</table>

*Numbers in the binding position indicate a 3′ end of the binding site relative to the ATG start codon.
†R, reverse strand.
‡Each zinc finger was named using the single abbreviation of the four amino acid residues at positions −1, 2, 3, and 6 in the α-helix of the zinc finger.
existing in the human genome. Although the probability of four-fingered ZFPs recognizing 12 bp DNA sequences \((4^{12} = 2 \times 10^7) \) is much lower than the whole human genome \((3 \times 10^9) \), considering the portion of the promoter region of unique gene in the whole genome, it is believed that four-fingered ZFPs are very safe and would not affect other genes. With high affinity and high specificity of four-fingered ZFPs as well as high efficiency of ZFPs isolated from human genome (25), the four-fingered ZFPs we have designed would be very ideal for gene controls.

Our results showed that artificial four-fingered ZFP-TFs targeting the promoter region of the \(hTERT \) could reduce the expression of telomerase at the transcriptional level with actual telomere shortening, and actual proliferation of human cancer cells was inhibited, although the inhibition level was not strong enough to kill cancer cells. Several other genetic approaches have also been described to block telomerase expression or biogenesis by ribozyme, antisense, and small interfering RNA agents whose levels of telomerase inhibition, including the present results, were mostly similar but much lower than those of direct inhibitors such as pharmacologic drugs and chemical agents (15, 29-31). From the 4th day, \(hTERT \) expression was suppressed by artificial ZFP-TFs, whereas actual cell

FIGURE 3. Repression of endogenous \(hTERT \) using artificial ZFP-TFs. A, to analyze relative quantitative gene expression at the \(hTERT \) mRNA level using real-time PCR with the \(2^{-\Delta\Delta C_t} \) method, results with the reference gene (GAPDH) were compared with those of the target gene (\(hTERT \)). After RNA extraction, reverse transcription was done. The resulting cDNA was subjected to real-time PCR using gene-specific primers (sequences are shown in Materials and Methods). Gene expression profiles of pF-197RK, pF-153RK, pF-122RK, pF-105RK, pF-97RK, pF-5RK, pcDNA3-null vector, and HEK293 (control) were analyzed by real-time PCR using the \(2^{-\Delta\Delta C_t} \) method. Samples were collected at 2, 4, 8, or 12 d after transfection. A HEK293 sample was selected as the calibrator. For the calibrator, \(\Delta\Delta C_t \) equals zero and \(2^\Delta C_t \) equals one, so that the fold change in gene expression in HEK293 equals one, by definition. For other samples, evaluation of \(2^{-\Delta\Delta C_t} \) represents the fold change in gene expression relative to HEK293. B, telomerase activity after transfection with artificial ZFP-TFs. HEK293 cell lysates incubated for 2 to 12 d were tested for telomerase activity via the TRAP assay. PCR products were separated by gel electrophoresis, and gels were stained with SYBR Green. Arrows, positions of the 36 bp internal control bands. Negative control (NC) corresponds to use of CHAPS lysis buffer. C, to determine relative telomerase activities, signal densities of the bands were quantitated by NIH ImageJ software, and then each unit of total product generated (TPG) was calculated according to the instructions of the manufacturer. Telomerase activity values represent percentage values of TPG relative to HEK293 cells. D, cell proliferation assay. Each of six ZFP-TFs inhibits the growth of HEK293 cells.
proliferation was beginning to be inhibited as late as almost the 12th day of culture. This might indicate the possibility of another direct controlling pathway to inhibit cell growth other than telomere shortening–related cellular inhibition.

Many approaches using designed ZFPs with activator domains were used to activate dormant genes (16, 24). Recent activation of dormant tumor suppressor gene showed the inhibition of proliferation and invasion of tumor cell line (35, 36). We expect that the attachment of an activator domain to our ZFP-TF targeting the hTERT promoter region could also lead to interesting results, as telomerase activity and telomere lengths are closely related to cell aging. There are many trials using gene insertion (37, 38). Telomerase activation using ZFPs should be unique in that a dormant gene is activated.

Although there are many trials for inhibition of telomerase (15, 29-31), telomerase gene repression using gene-regulating proteins such as ZFP-TFs could be advantageous, as this could suggest the new possibility of protein drugs regulating gene expression. Each isolated human ZFP tagged with protein transduction domains (39, 40) could be directly used for repression or activation of telomerase activity. Many combinations of ZFP-TFs could even be possible for maximum efficiency. Further studies are expected in this field.

Telomerase and telomeres are attractive targets for anticancer therapy. As tumors have relatively short telomeres, human cancers can be more susceptible to cancer drug when telomerase is inhibited. The repression of telomerase expression by artificial ZFP-TFs presents a new promising strategy for inhibiting the growth of human cancer cells.

FIGURE 4. Stable repression of endogenous hTERT. Samples were collected at 100 d after transfection. A, quantitative gene expression profiles of six ZFP-TFs, pcDNA3-null vector, and HEK293 (control) were analyzed by real-time PCR. B, TRAP assay. Relative signal densities of the bands are summarized (bottom). C, Southern blot assay to measure the telomere length of HEK293 cells, control clones (HEK293 and pcDNA3-null vector), and artificial ZFP-TF expressing clones (pF-197RK, pF-153RK, pF-122RK, pF-105RK, pF-97RK, and pF-5RK).
Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
We thank TotoGen, Inc. for the use of human zinc fingers and Dr. Roberto Paracca for critical reading of the manuscript.

References
Molecular Cancer Research

Repression of Human Telomerase Reverse Transcriptase Using Artificial Zinc Finger Transcription Factors

Joon Hyung Sohn, Byung-Il Yeh, Jong-Whan Choi, et al.

Mol Cancer Res Published OnlineFirst February 9, 2010.

Updated version Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-09-0141

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.