Analyses of Resected Human Brain Metastases of Breast Cancer Reveal the Association between Up-Regulation of Hexokinase 2 and Poor Prognosis

Diane Palmieri,1 Daniel Fitzgerald,1 S. Martin Shreeve,1 Emily Hua,1 Julie L. Bronder,1 Robert J. Weil,5 Sean Davis,6 Andreas M. Stark,6 Maria J. Merino,3 Raffael Kurek,7 H. Maximilian Mehdorn,2 Gary Davis,8 Seth M. Steinberg,4 Paul S. Meltzer,2 Kenneth Aldape,9 and Patricia S. Steeg1

1Women's Cancers Section, Laboratory of Molecular Pharmacology, 2Genetics Branch, 3Surgical Pathology Section, Laboratory of Pathology, and 4Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; 5Brain Tumor Institute, Cleveland Clinic Foundation, Cleveland, Ohio; 6University of Schleswig-Holstein Medical Center, Kiel, Germany; 7University of Tuebingen, Tuebingen, Germany; 8Sigma-Aldrich Biotechnology, St. Louis, Missouri; and 9Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, Texas

Abstract

Brain metastases of breast cancer seem to be increasing in incidence as systemic therapy improves. Metastatic disease in the brain is associated with high morbidity and mortality. We present the first gene expression analysis of laser-captured epithelial cells from resected human brain metastases of breast cancer compared with unlinked primary breast tumors. The tumors were matched for histology, tumor-node-metastasis stage, and hormone receptor status. Most differentially expressed genes were down-regulated in the brain metastases, which included, surprisingly, many genes associated with metastasis. Quantitative real-time PCR analysis confirmed statistically significant differences or strong trends in the expression of six genes: BMP1, PEDF, LAMy3, SIAH, STHMN3, and TSPD2. Hexokinase 2 (HK2) was also of interest because of its increased expression in brain metastases. HK2 is important in glucose metabolism and apoptosis. In agreement with our microarray results, HK2 levels (both mRNA and protein) were elevated in a brain metastatic derivative (231-BR) of the human breast carcinoma cell line MDA-MB-231 relative to the parental cell line (231-P) in vitro. Knockdown of HK2 expression in 231-BR cells using short hairpin RNA reduced cell proliferation when cultures were maintained in glucose-limiting conditions. Finally, HK2 expression was analyzed in a cohort of 123 resected brain metastases of breast cancer. High HK2 expression was significantly associated with poor patient survival after craniotomy (P = 0.028). The data suggest that HK2 overexpression is associated with metastasis to the brain in breast cancer and it may be a therapeutic target. (Mol Cancer Res 2009;7(9):OF1–8)

Introduction

Metastasis to the central nervous system (brain) is a contributor to breast cancer patient morbidity and mortality. Traditionally, brain metastases were diagnosed in ~15% of metastatic breast cancer patients late in the course of their disease and only palliative treatment was given. Improvements in breast cancer treatment have increased the number of patients with systemic responses and lengthened survival; however, brain metastases have also increased as a “sanctuary” site (reviewed in refs. 1, 2). This is best quantified in the Her-2+ subpopulation of breast cancers, where studies document that 25% to 40% of metastatic patients now develop brain metastases, often as the first site of relapse (reviewed in ref. 3). Other risk factors for brain metastases include “triple-negative” or basal primary tumors, systemic metastases, and young patient age (4-11). To understand the molecular events that underlie brain metastases, we initiated a gene expression profiling experiment using resected brain metastases of breast cancer.

Among the trends in gene expression, the overexpression of hexokinase 2 (HK2) was observed in brain metastases. HK2 is one of four members of the hexokinase family. The isoenzymes (HK1, HK2, HK3, and glucokinase) are structurally similar; however, only HK1 and HK2 are functionally similar. HK2, but not HK1, is overexpressed in several cancer types compared with normal tissues; among primary tumors, high HK2 confers a poor prognosis (12-15). Ample evidence suggests that HK2 biochemical pathways are heightened in cancer and may constitute a potential therapeutic target. HK2 plays a key step early in glycolysis, phosphorylating glucose to produce glucose-6-phosphate. In some cell types, HK2 binds to the mitochondrial membrane to obtain ATP exported from oxidative phosphorylation. The K_m for Mg-ATP bound to the mitochondrial membrane...
This efficient coupling of ATP from oxidative phosphorylation to the rate-limiting step of glycolysis may contribute to the Warburg effect, where tumor cells use glycolysis even in the presence of oxygen (16, 17). Not only does HK2 participate in bioenergetics, but its association with mitochondria has also been reported to prevent apoptosis (reviewed in ref. 18). HK2 binds to the voltage-dependent anion channel (VDAC) on the mitochondrial membrane. In turn, the VDAC/HK2 complex forms part of the permeability transition pore together with cyclophilin D and adenine nucleotide translocase (17, 19). How HK2 physically blocks apoptosis is still under investigation. One model suggests that the proapoptotic protein Bax also physically binds VDAC (in the absence of HK2) to promote cytochrome c release. Alternatively, HK2 may modulate binding of the antiapoptotic protein Bcl-Xl to VDAC, with consequences for its downstream partnering with Bak and Bax (reviewed in ref. 20). HK2 expression may also influence $[^{18}F]2$-fluoro-2-deoxy-D-glucose uptake in tumors, thus affecting positron emission tomography imaging for diagnosis and staging (13, 21, 22).

This study presents the first analysis of differentially expressed genes between resected brain metastases and primary breast carcinomas. A trend of elevated HK2 expression in brain metastases is shown. In a brain metastasis cell line model, knockdown of HK2 expression reduced cellular viability under conditions of limited glucose availability. Finally, the relevance of differential HK2 expression is shown by the association of high HK2 expression in brain metastases with reduced patient survival.

Table 1. Histologic Characteristics of Microarray Specimens

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Site</th>
<th>TNM*</th>
<th>ER</th>
<th>Her-2</th>
<th>Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-11-1</td>
<td>BM</td>
<td>T1 N0</td>
<td>Neg.</td>
<td>Amp.</td>
<td>Ductal</td>
</tr>
<tr>
<td>4-11-2</td>
<td>BM</td>
<td>T2 N1 M0</td>
<td>Pos. wt</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-3</td>
<td>BM</td>
<td>T3 N2</td>
<td>Pos. wt</td>
<td>Lobular</td>
<td></td>
</tr>
<tr>
<td>4-11-4</td>
<td>BM</td>
<td>T3 N1 M0</td>
<td>Neg. wt</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-5</td>
<td>BM</td>
<td>T3 N2 M0</td>
<td>Pos. Amp.</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-6</td>
<td>BM</td>
<td>T2 N1</td>
<td>Neg. Amp.</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-7</td>
<td>BM</td>
<td>T2 N1 M0</td>
<td>Neg. Amp.</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-8</td>
<td>BM</td>
<td>T1 N0</td>
<td>Pos. wt</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-9</td>
<td>P</td>
<td>T2 N1</td>
<td>Neg. wt</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-10</td>
<td>P</td>
<td>T1 N0</td>
<td>Pos. Amp.</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-11</td>
<td>P</td>
<td>T1</td>
<td>Pos. wt</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-12</td>
<td>P</td>
<td>T2 N0</td>
<td>Neg. wt</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-13</td>
<td>P</td>
<td>T2 N1</td>
<td>Neg. wt</td>
<td>Lobular</td>
<td></td>
</tr>
<tr>
<td>4-11-14</td>
<td>P</td>
<td>T2 N1</td>
<td>Neg. wt</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-15</td>
<td>P</td>
<td>T1</td>
<td>Pos. wt</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-16</td>
<td>P</td>
<td>T2</td>
<td>Pos. wt</td>
<td>Ductal</td>
<td></td>
</tr>
<tr>
<td>4-11-17</td>
<td>P</td>
<td>T3 N2 Mx</td>
<td>Neg. wt</td>
<td>Ductal</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BM, brain metastasis; P, primary tumor; TNM, tumor-node-metastasis; Pos., positive by immunohistochemistry; Neg., negative; Amp, amplified by fluorescence in situ hybridization; wt, wild-type DNA level.

*Histology of brain metastases based on patient's primary tumor.

is approximately five times lower than that of free Mg-ATP (16). This efficient coupling of ATP from oxidative phosphorylation to the rate-limiting step of glycolysis may contribute to the Warburg effect, where tumor cells use glycolysis even in the presence of oxygen (16, 17). Not only does HK2 participate in bioenergetics, but its association with mitochondria has also been reported to prevent apoptosis (reviewed in ref. 18). HK2 binds to the voltage-dependent anion channel (VDAC) on the mitochondrial membrane. In turn, the VDAC/HK2 complex forms part of the permeability transition pore together with cyclophilin D and adenine nucleotide translocase (17, 19). How HK2 physically blocks apoptosis is still under investigation. One model suggests that the proapoptotic protein Bax also physically binds VDAC (in the absence of HK2) to promote cytochrome c release. Alternatively, HK2 may modulate binding of the antiapoptotic protein Bcl-Xl to VDAC, with consequences for its downstream partnering with Bak and Bax (reviewed in ref. 20). HK2 expression may also influence $[^{18}F]2$-fluoro-2-deoxy-D-glucose uptake in tumors, thus affecting positron emission tomography imaging for diagnosis and staging (13, 21, 22).

This study presents the first analysis of differentially expressed genes between resected brain metastases and primary breast carcinomas. A trend of elevated HK2 expression in brain metastases is shown. In a brain metastasis cell line model, knockdown of HK2 expression reduced cellular viability under conditions of limited glucose availability. Finally, the relevance of differential HK2 expression is shown by the association of high HK2 expression in brain metastases with reduced patient survival.
Results

Microarray Analysis of Resected Brain Metastases and Unlinked Primary Breast Tumors

To identify potential molecular therapeutic targets for brain metastases of breast cancer, resected human brain metastases and unlinked primary tumors were subjected to a microarray analysis. Tissues were sectioned and epithelial cells were procured by laser capture microdissection (LCM). Of 16 flash-frozen brain metastases, 8 produced RNA of sufficient quality for hybridization, as did 9 of 20 primary breast tumors. Table 1 lists the characteristics of the tumors used. Most of the histologic indicators were well balanced between the primary tumors and brain metastases. Tumors varied from T1 to T3 and N0 to N2 in both cohorts. Four of eight brain metastases and four of nine primary tumors were estrogen receptor (ER) positive. Most of the specimens were ductal in histology, with a lobular carcinoma in each cohort and a single brain metastasis from an inflammatory primary tumor. Her-2 amplification was overrepresented in the brain metastases cohort (four of eight) compared with the primary tumors (one of nine).

A heat map displays the top 60 differentially expressed genes between the brain metastases and the primary tumors based on supervised hierarchical clustering and elimination of expression signatures associated with common breast cancer pathways, such as ER and Her-2 (Fig. 1). The majority of differentially regulated genes were down-regulated in the brain metastases. Notably, metastasis-associated genes were also down-regulated in the brain metastases, including genes involved in extracellular matrix function (MMP2, COL1A2, LOXL1, MFAP4, COL8A2, ADAM12, COL15A1, and THSD2), cell adhesion (PCDH16 and TM4SF7), and motility (UNC5B, CAPG, CCL2, and STMN3). Up-regulated genes included phosphatases (PPFIA1 and PTPLB), phosphoinositide glycan anchor biosynthetic proteins that glycosylphosphatidylinositol anchor proteins to membranes (PIGL and PI4G), and signaling proteins (CASK and SHB). The only extracellular matrix gene up-regulated in the brain metastases was LAM53, a component of laminin 12.

Because of the small number of specimens profiled and the rarity of resected brain metastases suitable for molecular analysis, validation experiments used four of the initially profiled specimens, in an attempt to repeat the gene expression trends observed on the microarray, supplemented with eight independent samples each of unlinked brain metastases and primary tumors. Quantitative real-time PCR (Q-PCR) was done on amplified cDNA from laser capture microdissected epithelial cells. Table 2 lists the expression levels of nine genes from the microarray analysis. Significant differences or strong trends in the expression of several down-regulated genes were observed, including BMP1, which regulates cartilage formation (P = 0.011), SIAH, seven in absentia homologue 1 (P = 0.001), STHMN3, stathmin-like 3 (P = 0.009), and TSPD2, a thrombospondin derivative (P = 0.0001). Two genes were up-regulated in brain metastases in the microarray analysis and the validation cohort: LAM53, a component of laminin 12 (P = 0.05), and HK2 (P = 0.13). Because of the potential contributions of HK2 to tumor cell bioenergetics, growth, and apoptosis, as well as the potential of HK2 to be pharmacologically inhibited, functional studies of altered HK2 expression were initiated.

Knockdown of HK2 Impairs Proliferation under Glucose-Limiting Culture Conditions

The human breast carcinoma cell line MDA-MB-231 was selected through six rounds of in vivo passage for a brain metastatic subline (231-BR; refs. 23, 24). Several of the validated gene expression trends noted above between brain metastases

<table>
<thead>
<tr>
<th>Gene</th>
<th>Trend on microarray</th>
<th>Mean ± SE*</th>
<th>P*</th>
<th>Brain metastasis</th>
<th>Primary tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHC30</td>
<td>Down in BM</td>
<td>22.5 ± 4.0</td>
<td>0.22</td>
<td>63 ± 17.2</td>
<td>0.022</td>
</tr>
<tr>
<td>BMP1</td>
<td>Down in BM</td>
<td>2.8 ± 0.5</td>
<td>0.01</td>
<td>7.1 ± 1.4</td>
<td>0.05</td>
</tr>
<tr>
<td>HK2</td>
<td>Up in BM</td>
<td>0.9 ± 0.2</td>
<td>0.13</td>
<td>0.6 ± 0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>LAM3</td>
<td>Up in BM</td>
<td>0.7 ± 0.2</td>
<td>0.05</td>
<td>3 ± 0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>LOXL1</td>
<td>Down in BM</td>
<td>3.8 ± 0.6</td>
<td>0.14</td>
<td>9.0 ± 2.6</td>
<td>0.05</td>
</tr>
<tr>
<td>PEDF</td>
<td>Down in BM</td>
<td>5.4 ± 3.1</td>
<td>0.01</td>
<td>76.0 ± 36.5</td>
<td>0.00011</td>
</tr>
<tr>
<td>SLIT3</td>
<td>Down in BM</td>
<td>1.0 ± 0.3</td>
<td>0.13</td>
<td>6.6 ± 2.8</td>
<td>0.00011</td>
</tr>
<tr>
<td>SIAH</td>
<td>Down in BM</td>
<td>1.1 ± 0.3</td>
<td>0.14</td>
<td>2.4 ± 0.7</td>
<td>0.26</td>
</tr>
<tr>
<td>STHMN3</td>
<td>Down in BM</td>
<td>0.6 ± 0.2</td>
<td>0.05</td>
<td>1.9 ± 0.6</td>
<td>0.0087</td>
</tr>
<tr>
<td>TSPD2</td>
<td>Down in BM</td>
<td>0.1 ± 0.1</td>
<td>0.05</td>
<td>2.7 ± 0.8</td>
<td>0.00014</td>
</tr>
</tbody>
</table>

Abbreviation: BM, brain metastasis.

*Adjusted for glyceraldehyde-3-phosphate dehydrogenase levels.

†By exact two-tailed Wilcoxon rank sum test.

FIGURE 2. Western blot analysis of HK2 expression in the 231-BR model system. A. HK2 protein levels in parental MDA-MB-231 human breast cancer cells (P) and a brain metastatic derivative (BR). Tubulin is shown as a loading control. B. Knockdown of HK2 expression in 231-BR cells is shown, including two independent clones of HK2 shRNA 1 (1-1 and 1-2) and one clone of HK2 shRNA 2 (2-1). Two clonal lines expressing a control scrambled shRNA (Controls 1 and 2) are also shown. C. Expression levels of other hexokinase family members are not affected by HK2 knockdown. Protein levels for HK1, HK3, and glucokinase are shown for the clonal lines listed in B, with actin as a loading control.
and primary breast tumors were analyzed in the model system by comparing mRNA levels for a given gene between the parental MDA-MB-231 cell line and the 231-BR metastatic subclone. Of the six genes analyzed by Q-PCR, only HK2 exhibited the same trend as seen in the tumor cohort. The 231-BR cells had a 2-fold increase in HK2 mRNA levels (16.37; 95% confidence interval, 9.24-23.5) compared with parental MDA-MB-231 cells (7.98; 95% confidence interval, 4.82-11.13). Increased HK2 protein expression was also noted in the 231-BR line compared with parental MDA-MB-231 cells, further suggesting that increased HK2 expression is coincident with brain metastatic colonization (Fig. 2A). To test the functional consequences of altered HK2 expression, 231-BR cells were infected with a control short hairpin RNA (shRNA) or one of two HK2 shRNAs, and clones were isolated. Three independent clones expressing HK2 shRNA exhibited a 56% to 65% reduction in HK2 protein levels relative to control clones as determined by Western blot analysis (Fig. 2B). The shRNA constructs used to knock down HK2 are specific for this hexokinase family member as they did not seem to affect expression of the related isoenzyme family members, HK1, HK3, and glucokinase (Fig. 2C).

To determine if knockdown of HK2 altered cellular bioenergetics, intracellular ATP levels were determined over 4 days of culture (Fig. 3). Under standard culture conditions, intracellular ATP levels were unaffected by HK2 depletion (Fig. 3A), possibly the result of redundant activities of hexokinase homologue proteins, which are clearly present (Fig. 2C). However, under these culture conditions, glucose is in excess compared with physiologic conditions (4.5 g/L in standard growth medium compared with human serum levels of 7-11 mg/L). We therefore determined cellular ATP levels in limited glucose, 10% of standard culture conditions (Fig. 3B). ATP levels in the two control clones increased 5- to 6-fold over time; a smaller rate of ATP increase was observed in each of the HK2 knockdown clones (2- to 4-fold; \(P < 0.005 \) for each HK2 knockdown clone compared with the average of the controls and \(P = 0.003 \) for a comparison of the mean of the controls to the mean of the HK2 knockdown clones by one-way ANOVA). The amount of ATP is proportional to the number of viable cells, and as such, we confirmed these results using an MTT assay. No difference in viability was observed over 4 days of culture between the control and HK2 knockdown clones under standard culture conditions, whereas in limiting glucose concentrations the HK2 knockdown clones exhibited a pronounced decrease in viability compared with controls (data not shown). This observation was also confirmed by trypan blue exclusion cell counting. An attempt was made to assess the effect of low oxygen conditions on ATP levels/viability; no difference was observed between control and

![FIGURE 3. HK2 shRNA reduced cell viability, as measured by ATP concentration, of 231-BR cells in vitro under glucose-limiting conditions.](image-url)
HK2 knockdown clones when cultured in hypoxic conditions (Fig. 3C). Further analysis showed that HK2 knockdown was overcome under hypoxic conditions by an increase in HK2 mRNA levels (Fig. 3D).

The effect of decreased HK2 expression on drug-induced apoptosis was examined to identify a role for HK2 in cell death in the 231-BR cells. Control and HK2 knockdown clones of 231-BR cells were incubated for 48 hours in the presence or absence of 0.5 to 1.0 μmol/L of doxorubicin or 1 to 50 nmol/L of paclitaxel in standard growth conditions. Although both drugs showed a dose-dependent increase in apoptosis as measured by Cell Death Detection ELISA+ for all cells, there was no consistent difference in the amount of apoptosis between the control and HK2 knockdown clones. Similar experiments were done using 5 Gy radiation as a relevant apoptosis inducer, and again, no significant difference was observed between control and knockdown clones (data not shown).

HK2 Protein Levels Are Associated with Survival after Resection

To further investigate HK2 as a potential molecular target for brain metastasis of breast cancer, we asked whether relative HK2 levels were associated with patient outcome after resection. Immunohistochemistry was done on a cohort of 123 resected brain metastases of breast cancer. The cohort of resected brain metastases was scored as having no, low, or high levels of HK2. Representative images of low and high HK2 staining levels are shown (Fig. 4A). Ninety-five of the 123 tumors (77%) expressed high levels of HK2 staining, and patient survival in this group was significantly reduced compared with the 19 of 123 (15%) patients with low tumor HK2 levels (Fig. 4B). The median survival for patients with high HK2 expression was 9.6 months, whereas that for patients with low HK2 expression tumors was 17.5 months (P = 0.028 for overall difference between the curves, by two-tailed log-rank test). With regard to conventional histologic markers, HK2 expression was not well associated with either ER-2 or ER expression (P = 0.19 and 0.26, respectively, two-tailed Fisher's exact test). Table 3 shows the results of a Cox proportional hazards model analysis of ER, Her-2, and HK2 staining data in this cohort. All three parameters were determined to be jointly statistically significant in this model. Furthermore, using a likelihood ratio test, HK2 expression provided a statistically significant increase in prognosis in the survival model beyond that of ER and Her-2 together (P = 0.0033). Thus, HK2 may be useful as a marker for prognosis in this population, if this finding were independently confirmed.

Discussion

Brain metastases are increasing in incidence in metastatic breast cancer patients and often occur when a patient is responding to treatment or has stable disease systemically (3, 25). Several factors suggest that this niche site may be molecularly distinct: We previously documented a prominent neuro-inflammatory response between brain metastatic breast cancer cells and activated host microglia and astrocytes both in the 231-BR mouse model and resected human brain metastases (26) and others have observed similar trends (27-29). These data suggest the existence of a unique tumor cell-microenvironmental interaction. Second, the brain is known as a sanctuary site (reviewed in ref. 30). Although the blood-brain barrier (BBB) severely restricts access of drugs and cytokines to the normal brain, it is not well known to what extent the BBB is patent or compromised in developing brain metastases; to the extent that the BBB is patent, this would also contribute to an altered environment. Based on these observations, we hypothesized that brain metastases would exhibit distinct gene expression trends. A microarray analysis of gene expression was conducted using flash-frozen samples of resected brain metastases of breast cancer. It would be impossible to identify frozen matched primary tissues for these brain metastases; therefore, unlinked primary breast tumors matched for hormone receptor and tumor-node-metastasis status were used for comparison. While using imperfect matches, and limited in the number of

<table>
<thead>
<tr>
<th>Variable</th>
<th>HR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Her-2</td>
<td>0.50 (0.31-0.83)</td>
<td>0.0065</td>
</tr>
<tr>
<td>ER</td>
<td>0.41 (0.24-0.71)</td>
<td>0.0015</td>
</tr>
<tr>
<td>HK2</td>
<td>2.52 (1.27-4.97)</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

NOTE: Based on staining results from 113 patients with complete data on the three parameters.

Abbreviations: HR, hazard ratio; CI, confidence interval.
specimens available, the potential insights afforded by actual clinical material as opposed to cell lines is inarguable. Another advantage of the experimental design was that epithelial cells were purified by LCM from each lesion, so that gene expression differences due to contaminating nontumor cells in the surgical margin were not present. The microarray analysis indicated that brain metastases differentially express several genes by 2- to 3-fold, including phosphatases, glycosylphosphatidylinositol-anchoring proteins, and those regulating the extracellular matrix and cell adhesion. Differential gene expression was validated using a semi-independent set of brain metastases and primary tumors, the experimental design again dependent on availability of craniotomy specimens suitable for molecular analysis. Statistically significant differences or trends ($P < 0.1$) in differential gene expression were observed for six genes. Given the limited sample size, our conclusion is that all of these trends may be of biological importance. Several of these genes are under further investigation. Recently, Bos et al. reported 243 genes that were differentially expressed between brain metastatic and primary cell lines. From this data set, two genes overlap with our findings in the surgical specimens. CASK (calcium/calmodulin-dependent serine protein kinase) was up-regulated in the brain metastatic cohorts, whereas $TRIM34$ (tripartite motif-containing 34) was down-regulated (31).

HK2 was a compelling target for several reasons, including its reported involvement in bioenergetics and apoptosis. Hexokinase expression and activity is up-regulated in breast cancer compared with normal breast tissue (32), and limited data suggested that it is further up-regulated in metastases (33). In addition, HK2 was one of few genes up-regulated in the brain metastases, so that inhibitors with potential therapeutic benefit could be considered.

Using the 231-BR model system, HK expression was down-regulated \sim2-fold using two different shRNAs. Under normal tissue culture conditions, no difference was observed between the control and HK2 shRNA clones in ATP levels/viability or drug-induced apoptosis. However, normal serum glucose levels are 7 to 10 mg/L, in contrast to a concentration of 4.5 g/L in normal cell culture medium. Therefore, the experiments were repeated using 10% of the standard glucose concentration, conditions in which we expect that metabolism of glucose by the cells decreases the glucose concentration to physiologic levels over the time course of the experiment. Under these conditions, the HK2 knockdown cells exhibited altered growth kinetics. Viability, as assessed by both intracellular ATP concentrations and MTT assay, was reduced in the HK2 knockdowns. A reduction in proliferation by down-regulation of HK2 was also reported for LoVo colon cancer cells (34). Circumstantial evidence suggests that conditions of limited nutrient availability may exist in brain metastases. Necrotic centers were observed in at least 8 of 16 resected human brain metastases, indicative of poor vascularization (26). The data therefore suggest a functional role for altered HK2 expression in cell growth under conditions of limited nutrient availability. This difference will be difficult to confirm in vivo. The 231-BR model produces multiple brain metastases after intracardiac injection, but mice must be routinely sacrificed 1 month after injection according to Animal Care and Use Committee guidelines due to neurologic deficits (paralysis) and weight loss, a point too early for the formation of large necrotic metastases (23, 26, 35). To overcome this, new models of breast cancer brain metastasis will be needed that recapitulate necrosis and conditions of nutrient availability.

No difference in apoptosis induced by drugs or radiation was observed between the control and HK2 knockdown clones (data not shown). These data may reflect the recent discovery that glucose metabolism can exert other functions to regulate apoptosis, such as the oxidation of cytochrome c (36). Thus, glucose metabolism pathways downstream of HK2 interaction with the mitochondrion may alter its effects on apoptosis. It is also possible that HK1 could compensate for the reduced expression of HK2 in the apoptotic pathway, as HK1 is capable of binding to mitochondria.

The potential significance of HK2 overexpression in brain metastases of breast cancer was confirmed by an immunohistochemical analysis in a cohort of craniotomy specimens. Approximately 77% of the craniotomy specimens exhibited high HK2 expression, and this was associated with reduced survival after resection ($P = 0.028$). These data may not apply to all brain metastases, as patients with a limited number of brain lesions that are located in accessible regions of the brain are typical surgical candidates. If validated, therapeutic approaches to inhibit HK2 may be considered. Although this enzyme is ubiquitous and instrumental for cell function, a reduction in its activity rather than a complete elimination may be an achievable target. Several compounds have been identified against the potential antiapoptotic role for HK2 (19, 37-39) but would be of limited benefit in the 231-BR model system. Other agents directed at the bioenergetic activity of HK2, if BBB permeable, would be of high interest.

Materials and Methods

Specimens

Frozen brain metastases were collected from Vanderbilt University, the University of Schleswig-Holstein Medical Center, and the NIH. Frozen primary invasive breast samples were collected from the University of Schleswig-Holstein Medical Center or University of Tuebingen. All samples were anonymized and approved by the National Cancer Institute Office of Human Subjects Research. Diagnosis and histopathologic characteristics were confirmed by a single pathologist before use in the study.

Expression Profiling of Tumor Cohorts

All samples were subjected to LCM and RNA amplification. Briefly, 8-μm frozen tissue sections were thawed 15 s at room temperature and stained using Histogene LCM Frozen Section Staining kit (Arcturus Engineering) following the manufacturer’s instructions with the addition of a 5-min incubation in 100% ethanol before xylene. Approximately 2,000 laser-captured pulses were collected for each sample using the PixCell II Laser Capture Microdissection System (Arcturus Engineering) in a 15-min period. Captured cells were lysed off the LCM caps in PicoPure RNA Extraction buffer (PicoPure RNA Isolation kit, Arcturus Engineering) for 30 min at $55°C$ and frozen at $-80°C$ until ready to proceed. Total RNA was extracted according to the manufacturer’s instructions for the PicoPure RNA Isolation kit. Quality and quantity of
RNA were assessed using the RNA 6000 Pico Assay for the 2100 Bioanalyzer (Agilent Technologies). A minimum of 10 ng of RNA was then subjected to two rounds of a T7 RNA polymerase catalyzed amplification protocol using the RiboAmp RNA Amplification kit (Arcturus Engineering). Quality and quantity of the amplified aRNA were assessed using the RNA 6000 Nano Assay for the 2100 Bioanalyzer. A reference RNA sample consisting of a pool of six breast cancer cell lines (MCF7, ZR-75, BT-474, BT-549, MDA-MB-231, and T-47-D) was simultaneously amplified.

cDNA microarray analysis: Cy3-dUTP–labeled or Cy5-dUTP–labeled cDNA (GE Healthcare) was synthesized from 50 to 100 µg of amplified aRNA using random primed polymerization with SuperScript II reverse transcriptase (Invitrogen). Equal amounts of labeled cDNA for the test sample and the reference sample were hybridized to cDNA array for each tumor. Arrays were constructed on glass slides from PCR products representing the inserts of 28,411 IMAGE consortium cDNA clones in the National Human Genome Research Institute microarray core laboratory. Fluorescent intensities were measured using an Agilent scanner, and scanned images were analyzed using DeArray software. Significance of microarray analysis was used for data mining and analysis. Supervised clustering was done, where each sample was identified as brain metastasis or primary tumor and the ER or Her-2 status was identified.

Quantitative Real-time PCR

Double-stranded cDNA was prepared using the second-round synthesis protocol from the RiboAmp RNA amplification kit. Q-PCRs consisted of 1× SYBR Green Supermix (Bio-Rad Laboratories), 0.2 mmol/L of forward and reverse primers, and 10 ng cDNA. Cycling conditions consisted of three-step amplification and melt curve analysis using the iQ5 Real-Time PCR Detection System (Bio-Rad Laboratories). For generating a standard curve, amplified cDNA from the reference sample detailed above was used in a 5-fold dilution series. Relative gene expression was calculated by dividing the specific expression of the test with the specific expression of the reference sample.

Cell Culture and Knockdown of HK2 with shRNA

A brain metastatic derivative of the breast cancer cell line MDA-MB-231 was isolated and described previously (24). These cells, designated 231-BR, were maintained in high-glucose DMEM (Invitrogen) and supplemented with 10% fetal bovine serum (Invitrogen) and penicillin-streptomycin (Invitrogen) at 37°C in 5% CO2. Clones of 231-BR cells with stable knockdown of HK2 expression were generated using a commercial lentiviral system for introduction of shRNAs (Sigma). Sigma Mission Non-Target shRNA (SHC002V) was used to generate control cell lines, and two shRNAs, TRCN 0000037669 and TRCN 0000037673, were used for knockdown of HK2 expression. Lentiviral particles (2 × 105) were added to 231-BR cells for 24 h, and cells were subsequently cultured in medium containing 1 µg/mL puromycin. Cells were maintained and expanded in this selective medium to select individual clones with stable knockdown.

Western Blot Analysis

Western blots were done using standard protocols. Briefly, 231-BR cell lysates were prepared in radioimmunoprecipitation assay buffer [20 mmol/L Tris-HCl (pH 8), 100 mmol/L NaCl, 10% glycerol, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS] supplemented with a Complete Mini protease inhibitor cocktail (Roche). Protein lysates (50–100 µg) were separated using SDS-PAGE. Proteins were transferred to nitrocellulose and blots were incubated for 2 h to overnight with the following antibodies: rabbit anti-HK1 polyclonal antibody (1:2,000 dilution; Millipore), rabbit anti-HK2 polyclonal antibody (1:5,000 dilution; Millipore), rabbit anti-HK2 polyclonal antibody (1:500 dilution; Abgent), rabbit anti-HK3 polyclonal antibody (1:500 dilution; Abgent), and rabbit anti-glucokinase (HK4; 1:200 dilution; Santa Cruz Biotechnology). Goat anti-rabbit horseradish peroxidase (1:5,000; Santa Cruz Biotechnology) was used as a secondary antibody. Enhanced chemiluminescence was used for detection.

Cell Viability Assay

Cells were seeded in normal growth medium (high-glucose DMEM, 10% fetal bovine serum with no additional additives). This medium was diluted 1:10 with glucose-free DMEM for glucose-limiting experiments, and viability was measured at various time points. The CellTiter-Glo Luminescent Cell Viability Assay (Promega) was used to measure cellular ATP levels. This assay was conducted in 96-well opaque-walled luminescence plates (Perkin-Elmer), and relative ATP levels were measured using a luminometer (Promega GloMax). Replicate 96-well plates were prepared, and each sample was analyzed in quadruplicate wells.

Immunohistochemistry

Archival paraffin-embedded tumor samples were obtained at the M. D. Anderson Cancer Center from patients with a history of breast cancer who presented with metastases to the central nervous system parenchyma. The median age of the cohort was 51 y, with a range from 27 to 75 y. Thirty-three of 124 patients (26.6%) had ER-positive brain metastasis, and 45 of 124 (36.2%) had Her-2 amplification. Sections from these samples were confirmed to have metastatic breast cancer present and subjected to immunohistochemistry for HK2. Sections were processed and stained as previously described (40) using an anti-HK2 antibody (Millipore) at a 1:500 dilution with microwave antigen retrieval in 10 mmol/L sodium citrate buffer. Scoring was done using a three-tiered system (no, low, or high) for HK2 protein levels.

Statistical Analysis

Survival of patients was determined from date of craniotomy until date of death or date of last follow-up as appropriate. The probability of survival as a function of time was determined by the Kaplan-Meier method, and the statistical significance of the difference between two Kaplan-Meier curves was determined by a two-tailed log-rank test. A Cox proportional hazards model was used to determine the statistical significance of HK2 on survival when evaluated along with ER and Her-2 status. A likelihood ratio test was used to determine the statistical significance of HK2 when this parameter was added to a model that had consisted of ER and Her-2...
status, and provides the additional effect of this parameter when added to the model. A one-way ANOVA was done on the average results from control clones and three HK2 knockdown clones, from \(n = 3 \) experiments, for the \(\textit{in vitro} \) data in Fig. 3. The results were adjusted using Holm's method. Comparisons of expression levels of genes were done using an exact Wilcoxon rank sum test. In view of the number of tests done, only \(P \) values of \(\leq 0.01 \) should be interpreted as being statistically significant, whereas those for which \(0.01 < P < 0.05 \) would be considered strong trends.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Dr. Abdel Elkahloun for construction of the cDNA microarrays used herein.

References

Molecular Cancer Research

Analyses of Resected Human Brain Metastases of Breast Cancer Reveal the Association between Up-Regulation of Hexokinase 2 and Poor Prognosis

Mol Cancer Res Published OnlineFirst September 1, 2009.

Updated version Access the most recent version of this article at: doi:10.1158/1541-7786.MCR-09-0234

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.