Abstract

Methyl cytosine binding domain protein 2 (MBD2) has been shown to bind to and mediate repression of methylated tumor suppressor genes in cancer cells, where repatterning of CpG methylation and associated gene silencing is common. We have investigated the role of MBD2 in breast cancer cell growth and tumor suppressor gene expression. We show that stable short hairpin RNA (shRNA)-mediated knockdown of MBD2 leads to growth suppression of cultured human mammary epithelial cancer lines, SK-BR-3, MDA-MB-231, and MDA-MB-435. The peak antiproliferative occurs only after sustained, stable MBD2 knockdown. Once established, the growth inhibition persists over time and leads to a markedly decreased propensity for aggressive breast cancer cell lines to form in vivo xenograft tumors in Bagg Albino (BALB)/C nude mice. The growth effects of MBD2 knockdown are accompanied by derepression of tumor suppressor genes, including DAPK1 and KLK10. Chromatin immunoprecipitation assays and bisulfite sequencing show MBD2 binding directly to the hypermethylated and CpG-rich promoters of both DAPK1 and KLK10. Remarkably, the promoter CpG island–associated methylation of these genes remained stable despite robust transcriptional activation in MBD2 knockdown cells. Expression of a shRNA-resistant MBD2 protein resulted in restoration of growth and resilencing of the MBD2-dependent tumor suppressor genes. Our data suggest that uncoupling CpG methylation from repressive chromatin remodeling and histone modifications by removing MBD2 is sufficient to initiate and maintain tumor suppressor gene transcription and suppress neoplastic cell growth. These results show a role for MBD2 in cancer progression and provide support for the prospect of targeting MBD2 therapeutically in aggressive breast cancers.

Introduction

Global hypomethylation of chromosomal DNA along with selective hypermethylation of specific gene promoters lead respectively to chromosomal instability and down-regulation of tumor suppressor genes, both of which can promote cancer development and progression (1–3). The observation that CpG islands at the promoters of tumor suppressor genes are often methylated provides a mechanistic rationale for the clinical application of DNA methylation inhibitors such as decitabine and azacytidine (4, 5). The clinical utility of these agents has been limited somewhat by the potential for carcinogenicity, toxicity, and opposing off-target effects associated with nonspecific global demethylation (6–8). Alternate strategies for mitigating the effects of abnormal DNA methylation in tumors would create attractive new approaches for targeted therapy.

The repressive effects of DNA methylation on gene expression are mediated in large part by methyl-CpG binding proteins (MCBP; ref. 9–12). There has been interest in exploiting the function of MCBP to selectively interrupt DNA methylation-dependent changes in gene expression in tumors. To validate their utility as therapeutic targets, further research to adequately characterize the function of MCBP in human neoplasia is required.

One member of the MCBP family, methyl cytosine binding domain protein 2 (MBD2), has emerged in the context of cancer for several reasons. MBD2 binds densely methylated DNA with higher affinity than other known MCBPs and has been shown to act upon numerous tumor suppressor gene targets (13–15). In addition, this protein has been shown to exacerbate mouse models of intestinal carcinogenesis by increasing tumor size and number (16). Importantly, complete loss of MBD2 in the mouse does not appear to generate any major deleterious effect (17). The latter finding suggests that MBD2 is not required for survival either before or after development in normal tissues.
and therefore could be a selective target for therapy in tumors, where MBD2 may be playing an acquired pathologic role (18).

Whereas abnormal DNA methylation has been reported in virtually all human cancers, breast cancer is of distinct interest for several reasons. It is now well established that CpG island hypermethylation is an early event in mammary epithelial cell transformation (19–21). At such early time points, prevention is the main therapeutic goal and arresting progression of the primary lesion remains a viable strategy. Furthermore, genetic testing and improved screening methods for breast cancer have dramatically increased the probability of successfully implementing an early intervention strategy. Finally, aggressive forms of breast cancer (e.g., triple-negative breast cancer) are often poorly responsive to conventional treatment and biologically targeted ancillary approaches for treatment are needed (19, 22). The primary rationale behind the body of work reported here was to explore the role that MBD2 plays in mammary tumor growth and progression and thus its potential as a therapeutic target.

Materials and Methods

Lentivirus cloning and infection

Lentiviral vector design and packaging was accomplished as previously described (23). Briefly, the lentivirus system was used to mediate the efficient delivery, integration, and stable expression of short hairpin RNA (shRNA) that was rapidly fluorescence-activated cell sorting (FACS) selectable. The bicistronic pLV-THM vector allows for the simultaneous expression of a transgene and green fluorescent protein (GFP) marker to facilitate tracking of transduced cells. Vectors were engineered to contain the shRNA expression cassette flanked by cis-acting elements necessary for its encapsidation, reverse transcription, and integration. The packaging method used minimizes the risk of emergence of replication competent recombinants and avoids problems linked to promoter interference (23, 24). To insert shRNA hairpin-forming oligos, the pLV-THM vector was digested with MluI and ClaI and double-stranded shRNA oligonucleotides were designed with the appropriate complementary ends.

MTT growth assay

The MTT assay was performed as described previously (25). Briefly, cells were trypsinized and diluted to between 50,000 and 100,000 cells/ml. One hundred ul of cells were plated in each well of a 96-well culture dish (5,000 to 10,000 cells). At the time of assay analysis, 20 ul of a 5 mg/ml filtered solution of Thiazolyl Blue Tetrazolium Bromide (MTT, Sigma Aldrich) was added to each well. Dishes were incubated for 2 to 4 hours and medium was removed. Cells and formazan crystals were solubilized in acid isopropanol, 150 ul per well (4 mmol/L HCl, 0.1% NP-40 in isopropyl alcohol). Absorbance was read on a 96-well plate reader at 595 nm with a reference read at 620 nm. All absorbances were normalized to a standard dilution curve and reported as relative cell densities.

SYBR green fluorescence–based quantitative real-time PCR

Gene-specific mRNA levels and enrichment by ChIP were both measured using quantitative PCR essentially as described previously (26, 27). Gene-quantification primers were designed either manually, using the PrimerQuest tool (Integrated DNA Technologies), or autogenerated using the q PrimerDepot tool (available from: http://primerdepot.ncl.nih.gov; ref. 28). All primers were verified through a 4-log range using serial dilutions of reference cDNA or gDNA followed by standard curve analysis. A list of qPCR primers is given in online supplementary data. All amplifications were carried out using 40 cycles of standard two-step PCR plus a dissociation curve on either an ABI 7300 or ABI 7900 HT instrument (Applied Biosystems). All reactions were conducted in 96- or 384-well microtiter plates using SYBR green chemistry. See supplementary methods for quantitative PCR data analysis.

Xenograft growth and in vivo bioimaging of nude mice

Human tumor xenograft growth was assayed essentially as described previously (29, 30). For xenografts, 8-week-old female Bagg Albino (Balb)/C nu/nu mice were injected with 5×105 or 1×106 cells (GFP positive, SC and KD FACS purified MDA-MB-231 and MDA-MB-435). Cells were suspended in a 1:1 DMEM:lrBME mixture (Gibco and Cultrex Inc.) and a 50 μl bolus was injected with a 25/2 gauge needle and 1 cc syringe into the subcutaneous space overlying the dorsolateral aspects of both hind flanks. Each mouse acted as its own control, receiving scramble (left) and knockdown (right) cells in opposite flanks. Mice were examined 2 to 3 times per week until the appearance of a palpable mass. Upon the detection of a palpable tumor, caliper measurements and bioimaging using GFP fluorescence filters (IVIS 200, Xenogen Corp.) were carried out every second day. Standard IVIS 200 fluorescence acquisition settings were used including an exposure time between 4 to 10 seconds, background subtraction, medium binning, and a 1.5 cm focal height. A constant plane of anesthesia was maintained by metered nose cone delivery of aerosolized isoflurane in 1 to 2 liters/min oxygen and verified at regular intervals by respiratory monitoring. Approval for all animal work was obtained from the Institutional Animal Care and Use Committee and all procedures were conducted according to VCU DAR guidelines.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) assays were carried out essentially as described previously (27, 31). Briefly, cross-linked chromatin was sheared (Immersion sonicator, Diagenode) according to conditions optimized to produce fragments between 200 and 500 base pairs. Precipitations were carried out using chromatin from approximately 1×107 cells at 4°C, overnight using 4 μg of affinity-purified ChIP grade antibody (sc-12444, Santa Cruz Biotechnology, Inc.). In our experience, background and nonspecific genomic DNA contamination was reduced by using nonporous magnetic protein-G coated beads.

Materials and Methods

Lentivirus cloning and infection

Lentiviral vector design and packaging was accomplished as previously described (23). Briefly, the lentivirus system was used to mediate the efficient delivery, integration, and stable expression of short hairpin RNA (shRNA) that was rapidly fluorescence-activated cell sorting (FACS) selectable. The bicistronic pLV-THM vector allows for the simultaneous expression of a transgene and green fluorescent protein (GFP) marker to facilitate tracking of transduced cells. Vectors were engineered to contain the shRNA expression cassette flanked by cis-acting elements necessary for its encapsidation, reverse transcription, and integration. The packaging method used minimizes the risk of emergence of replication competent recombinants and avoids problems linked to promoter interference (23, 24). To insert shRNA hairpin-forming oligos, the pLV-THM vector was digested with MluI and ClaI and double-stranded shRNA oligonucleotides were designed with the appropriate complementary ends.

MTT growth assay

The MTT assay was performed as described previously (25). Briefly, cells were trypsinized and diluted to between 50,000 and 100,000 cells/ml. One hundred ul of cells were plated in each well of a 96-well culture dish (5,000 to 10,000 cells). At the time of assay analysis, 20 ul of a 5 mg/ml filtered solution of Thiazolyl Blue Tetrazolium Bromide (MTT, Sigma Aldrich) was added to each well. Dishes were incubated for 2 to 4 hours and medium was removed. Cells and formazan crystals were solubilized in acid isopropanol, 150 ul per well (4 mmol/L HCl, 0.1% NP-40 in isopropyl alcohol). Absorbance was read on a 96-well plate reader at 595 nm with a reference read at 620 nm. All absorbances were normalized to a standard dilution curve and reported as relative cell densities.

SYBR green fluorescence–based quantitative real-time PCR

Gene-specific mRNA levels and enrichment by ChIP were both measured using quantitative PCR essentially as described previously (26, 27). Gene-quantification primers were designed either manually, using the PrimerQuest tool (Integrated DNA Technologies), or autogenerated using the q PrimerDepot tool (available from: http://primerdepot.ncl.nih.gov; ref. 28). All primers were verified through a 4-log range using serial dilutions of reference cDNA or gDNA followed by standard curve analysis. A list of qPCR primers is given in online supplementary data. All amplifications were carried out using 40 cycles of standard two-step PCR plus a dissociation curve on either an ABI 7300 or ABI 7900 HT instrument (Applied Biosystems). All reactions were conducted in 96- or 384-well microtiter plates using SYBR green chemistry. See supplementary methods for quantitative PCR data analysis.

Xenograft growth and in vivo bioimaging of nude mice

Human tumor xenograft growth was assayed essentially as described previously (29, 30). For xenografts, 8-week-old female Bagg Albino (Balb)/C nu/nu mice were injected with 5×105 or 1×106 cells (GFP positive, SC and KD FACS purified MDA-MB-231 and MDA-MB-435). Cells were suspended in a 1:1 DMEM:lrBME mixture (Gibco and Cultrex Inc.) and a 50 μl bolus was injected with a 25/2 gauge needle and 1 cc syringe into the subcutaneous space overlying the dorsolateral aspects of both hind flanks. Each mouse acted as its own control, receiving scramble (left) and knockdown (right) cells in opposite flanks. Mice were examined 2 to 3 times per week until the appearance of a palpable mass. Upon the detection of a palpable tumor, caliper measurements and bioimaging using GFP fluorescence filters (IVIS 200, Xenogen Corp.) were carried out every second day. Standard IVIS 200 fluorescence acquisition settings were used including an exposure time between 4 to 10 seconds, background subtraction, medium binning, and a 1.5 cm focal height. A constant plane of anesthesia was maintained by metered nose cone delivery of aerosolized isoflurane in 1 to 2 liters/min oxygen and verified at regular intervals by respiratory monitoring. Approval for all animal work was obtained from the Institutional Animal Care and Use Committee and all procedures were conducted according to VCU DAR guidelines.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) assays were carried out essentially as described previously (27, 31). Briefly, cross-linked chromatin was sheared (Immersion sonicator, Diagenode) according to conditions optimized to produce fragments between 200 and 500 base pairs. Precipitations were carried out using chromatin from approximately 1×107 cells at 4°C, overnight using 4 μg of affinity-purified ChIP grade antibody (sc-12444, Santa Cruz Biotechnology, Inc.). In our experience, background and nonspecific genomic DNA contamination was reduced by using nonporous magnetic protein-G coated beads.
and senescence assays were also carried out; specifically quantitative assay delayed cell proliferation effects. MTT assays of subconfluent populations were used to assays impractical to conduct. Serial coulter counting and predominantly antiproliferative as opposed to cytotoxic to manifest, and the peak effect took 10 to 14 days to between 5 and 7 days of sustained MBD2 protein deficiency and E). Interestingly, antiproliferative effects required BR-3; and 94% inhibition of MDA-MB-435 cells (Fig. 1D aggressive growth characteristics were significantly more controls (49%), as measured by MTT assay as well as serial used. This method resulted in populations with FACS-based selection of stable knockdown populations was a lentiviral shRNA transduction assay, which allowed rapid results. MBD2 knockdown, proliferating at approximately half the rate of reduced cells. MCF-7 cells were the least sensitive to MBD2 significant growth inhibition relative to control virus knockdown MCF-7 cells was assayed in 3D culture using laminin-rich extracellular matrix extracts. MBD2 knockdown led to an increase in the proportion of clones, which formed organized epithelial structures in 3D cultures. Stable MBD2 knockdown MCF-7 cells formed epithelialized mammospheres, at a significantly increased frequency of 70% (CI = 0.55–0.83), whereas untransfected and scrambled shRNA-transfected controls formed fewer such structures, 46% (CI = 0.39–0.53, P ≤ 0.038) and 37% (CI = 0.29–0.45), P ≤ 0.012), respectively (Supplementary Fig. S1B, C, and D).

MBD2 knockdown inhibits xenograft tumor growth in BALB/c nu/nu mice

To determine whether MBD2 knockdown had any effect on the ability of aggressive breast cancer lines to form tumors in animals, MBD2 knockdown human breast cancer cells and scrambled shRNA control transformed lines were introduced subcutaneously into opposite flanks of 8-week-old female BALB/c nu/nu nude mice. Tumor growth was subsequently assayed using standard caliper measurements as well as in vivo bioluminescent imaging of the GFP-positive xenograft tumors. MBD2 knockdown led to a striking decrease in tumor formation and growth of aggressively tumorigenic lines (MDA-MB-435 and MDA-MB-231) in nude mice. Mean GFP fluorescence and median tumor volume calculated from caliper measurements were significantly greater in control lines compared with MBD2 knockdown tumors for all time points following the initial appearance of a palpable tumor (Fig. 2A–G).

MBD2 is required for selective tumor suppressor silencing in growth-inhibited breast cancer cell lines

To explore the mechanism underlying MBD2-dependent growth inhibition and to establish the extent to which MBD2 is required for silencing of specific tumor suppressor genes in breast cancer cells, gene expression assays, MBD2 promoter occupancy, and promoter methylation status in MBD2 knockdown and control breast cancer cells was determined. Using high-throughput quantitative PCR, the expression of 48 tumor suppressor genes previously shown to be epigenetically silenced in breast cancer was assayed, and a number of these genes were found to be significantly induced in MBD2

Cloning of a mutant MBD2 expression construct

A full-length MBD2 clone was obtained from the IMAGE Consortium and the coding sequence was subcloned into the pCDNA 4.0 plasmid using PCR amplification to introduce restriction complementary ends and followed by ligation into a TA cloning vector, amplification, BamH1-HindIII restriction product purification, and ligation. Site-directed mutagenesis was carried out to generate a shRNA-immune mutant using the QuickChange II kit (Stratagene). A single, amino acid neutral third base mutation was introduced into the shRNA target sequence of the cDNA vector to allow expression in a stable shRNA expressing background. The resulting MBD2 protein was wild type with respect to amino acid sequence. Transfection using Lipofectamine Plus was followed by Zeocin selection of pooled clones (Invitrogen). Expression near endogenous levels in knockdown cells was confirmed by immunoblotting as described above.

Results

MBD2 knockdown leads to growth inhibition of breast cancer cells

Previous studies have shown the ability of transient transfection with MBD2 siRNA to relieve silencing of individual methylated tumor suppressor genes without a major effect on tumor growth (13, 32). We hypothesized that a sustained reactivation of tumor suppressor genes might be required for growth effects. To test this hypothesis, a lentiviral shRNA transduction assay, which allowed rapid FACS-based selection of stable knockdown populations was used. This method resulted in populations with >95% GFP positivity (Fig. 1A) and >70% knockdown of MBD2 RNA and protein (Fig. 1B and C). MBD2 knockdown led to significant growth inhibition relative to control virus–transduced cells. MCF-7 cells were the least sensitive to MBD2 knockdown, proliferating at approximately half the rate of controls (49%), as measured by MTT assay as well as serial coulter counting. Other breast cancer cell lines with more aggressive growth characteristics were significantly more sensitive to MBD2 deficiency; antiproliferative effects ranged from 77% for MDA-MB-231; 92% inhibition of SKBR-3; and 94% inhibition of MDA-MB-435 cells (Fig. 1D and E). Interestingly, antiproliferative effects required between 5 and 7 days of sustained MBD2 protein deficiency to manifest, and the peak effect took 10 to 14 days to develop. The delayed kinetics of growth inhibition and the predominantly antiproliferative as opposed to cytotoxic effect of MBD2 knockdown rendered clonogenic survival assays impractical to conduct. Serial coulter counting and MTT assays of subconfluent populations were used to quantitatively assay delayed cell proliferation effects. Apoptosis and senescence assays were also carried out; specifically PARP cleavage, Annexin V Flow cytometry, and beta-galactosidase staining were assayed with no significant increase in either apoptosis or senescence markers observed (data not shown).

In addition to decreased proliferation rates, MBD2 knockdown cells differed from control cells in their microscopic appearance. Knockdown cells assumed a morphology more closely resembling nontransformed human mammary epithelial cells, becoming less fusiform with a more consistent adherent border relative to control tumor lines (Supplementary Fig. S1A). To determine whether MBD2 was promoting tumor-associated epithelial dedifferentiation, the three-dimensional (3D) morphology of knockdown MCF-7 cells was assayed in 3D culture using laminin-rich extracellular matrix extracts. MBD2 knockdown led to an increase in the proportion of clones, which formed organized epithelial structures in 3D cultures. Stable MBD2 knockdown MCF-7 cells formed epithelialized mammospheres, at a significantly increased frequency of 70% (CI = 0.55–0.83), whereas untransfected and scrambled shRNA-transfected controls formed fewer such structures, 46% (CI = 0.39–0.53, P ≤ 0.038) and 37% (CI = 0.29–0.45), P ≤ 0.012), respectively (Supplementary Fig. S1B, C, and D).

Cloning of a mutant MBD2 expression construct

A full-length MBD2 clone was obtained from the (Active Motif). SYBR green–based qRT-PCR was used to measure target sequence enrichment (~200–500bp resolution promoter proximal CpG-rich regions) in column-purified, immunoprecipitated DNA.

MBD2 knockdown leads to growth inhibition of breast cancer cells

Previous studies have shown the ability of transient transfection with MBD2 siRNA to relieve silencing of individual methylated tumor suppressor genes without a major effect on tumor growth (13, 32). We hypothesized that a sustained reactivation of tumor suppressor genes might be required for growth effects. To test this hypothesis, a lentiviral shRNA transduction assay, which allowed rapid FACS-based selection of stable knockdown populations was used. This method resulted in populations with >95% GFP positivity (Fig. 1A) and >70% knockdown of MBD2 RNA and protein (Fig. 1B and C). MBD2 knockdown led to significant growth inhibition relative to control virus–transduced cells. MCF-7 cells were the least sensitive to MBD2 knockdown, proliferating at approximately half the rate of controls (49%), as measured by MTT assay as well as serial coulter counting. Other breast cancer cell lines with more aggressive growth characteristics were significantly more sensitive to MBD2 deficiency; antiproliferative effects ranged from 77% for MDA-MB-231; 92% inhibition of SKBR-3; and 94% inhibition of MDA-MB-435 cells (Fig. 1D and E). Interestingly, antiproliferative effects required between 5 and 7 days of sustained MBD2 protein deficiency to manifest, and the peak effect took 10 to 14 days to develop. The delayed kinetics of growth inhibition and the predominantly antiproliferative as opposed to cytotoxic effect of MBD2 knockdown rendered clonogenic survival assays impractical to conduct. Serial coulter counting and MTT assays of subconfluent populations were used to quantitatively assay delayed cell proliferation effects. Apoptosis and senescence assays were also carried out; specifically PARP cleavage, Annexin V Flow cytometry, and beta-galactosidase staining were assayed with no significant increase in either apoptosis or senescence markers observed (data not shown).

In addition to decreased proliferation rates, MBD2 knockdown cells differed from control cells in their microscopic appearance. Knockdown cells assumed a morphology more closely resembling nontransformed human mammary epithelial cells, becoming less fusiform with a more consistent adherent border relative to control tumor lines (Supplementary Fig. S1A). To determine whether MBD2 was promoting tumor-associated epithelial dedifferentiation, the three-dimensional (3D) morphology of knockdown MCF-7 cells was assayed in 3D culture using laminin-rich extracellular matrix extracts. MBD2 knockdown led to an increase in the proportion of clones, which formed organized epithelial structures in 3D cultures. Stable MBD2 knockdown MCF-7 cells formed epithelialized mammospheres, at a significantly increased frequency of 70% (CI = 0.55–0.83), whereas untransfected and scrambled shRNA-transfected controls formed fewer such structures, 46% (CI = 0.39–0.53, P ≤ 0.038) and 37% (CI = 0.29–0.45), P ≤ 0.012), respectively (Supplementary Fig. S1B, C, and D).

MBD2 knockdown inhibits xenograft tumor growth in BALB/c nu/nu mice

To determine whether MBD2 knockdown had any effect on the ability of aggressive breast cancer lines to form tumors in animals, MBD2 knockdown human breast cancer cells and scrambled shRNA control transformed lines were introduced subcutaneously into opposite flanks of 8-week-old female BALB/c nu/nu nude mice. Tumor growth was subsequently assayed using standard caliper measurements as well as in vivo bioluminescent imaging of the GFP-positive xenograft tumors. MBD2 knockdown led to a striking decrease in tumor formation and growth of aggressively tumorigenic lines (MDA-MB-435 and MDA-MB-231) in nude mice. Mean GFP fluorescence and median tumor volume calculated from caliper measurements were significantly greater in control lines compared with MBD2 knockdown tumors for all time points following the initial appearance of a palpable tumor (Fig. 2A–G).

MBD2 is required for selective tumor suppressor silencing in growth-inhibited breast cancer cell lines

To explore the mechanism underlying MBD2-dependent growth inhibition and to establish the extent to which MBD2 is required for silencing of specific tumor suppressor genes in breast cancer cells, gene expression assays, MBD2 promoter occupancy, and promoter methylation status in MBD2 knockdown and control breast cancer cells was determined. Using high-throughput quantitative PCR, the expression of 48 tumor suppressor genes previously shown to be epigenetically silenced in breast cancer was assayed, and a number of these genes were found to be significantly induced in MBD2
knockdown MDA-MB-231 and MDA-MB-435 cells. Among the most significantly derepressed genes in knockdown cells were the death-associated protein kinase (DAPK1) and kallikrein 10 (KLK10) genes (Fig. 3A). Bisulfite conversion and sequencing showed that the promoter CpG islands of both genes were heavily methylated in these breast cancer cell lines (Fig. 3C and D). The MBD2 knockdown breast cancer cells offered a unique system for interrogating the temporal dynamics of promoter methylation before and after transcriptional activation. Interestingly, the methylation status of these promoter-associated CpG rich regions remained remarkably stable, with no appreciable change even after robust transcriptional activation by MBD2 knockdown (Fig. 3C and D). ChIP assays designed to quantify MBD2 occupancy at the promoter CpG islands of DAPK1 and KLK10 showed MBD2 bound at the methylated promoter-associated CpG islands of both genes (Fig. 3B). Binding of MBD2 to DAPK1 and KLK10 promoters was evident in scramble shRNA control (SC) cells; this binding was reduced to background levels in MBD2 knockdown cells as expected. A control gene, GAPD, was included to verify the absence of nonspecific enrichment or genomic DNA contamination. By showing MBD2 resident at the hypermethylated promoter-associated CpG islands of derepressed targets, these assays support a model of direct transcriptional inhibition of selected CpG-rich target genes by MBD2.

MBD2 knockdown reversibly and independently relieves silencing of a subset of tumor suppressor genes distinct from those induced by 5-aza-2-deoxycytidine. Pooled stable clones expressing shRNA against MBD2 in the human mammary epithelial carcinoma line, MCF-7

Figure 1. Stable shRNA mediated knockdown of MBD2 leads to growth inhibition of breast cancer cells in vitro. A, phase contrast LM (top) and GFP fluorescent micrographs (bottom) for MDA-MB-231, MDA-MB-435, and SK-BR-3 lines following transduction with GFP expressing MBD2 shRNA lentivirus. B, anti-MBD2 (α-MBD2) immunoblots, Coomasie stained PAGE gels shown as loading controls. Empty pLV-THM lentivirus packaging construct [Vector], scrambled shRNA lentivirus [shScramble], and MBD2 targeting shRNA virus [shMBD2]. C, quantitative RT-PCR expression of MBD2, MBD2 knockdown (shMBD2) normalized to controls (shScramble). (Solid bars: mean values normalized to a GAPD internal reference; Error bars: 95% confidence intervals based on 3 replicate qPCR experiments.) D, cell proliferation MTT assay. Mean and 95% CI of relative absorbance, n = 3 biological replicates. Vector controls normalized to 100% growth. E, growth curves, serial coulter counts for 5 days, beginning 10-days-post lentivirus infection (designated the 0 time point). Data points represent mean count from three replicate cultures. Error bars = 95% CI.
were selected and compared against identically derived control shRNA–expressing lines using a high-throughput quantitative PCR assay that measures expression of multiple genes quantitatively and simultaneously. Once again, changes in the mRNA levels of 48 tumor suppressor genes previously shown to be epigenetically inactivated in breast tumors were assayed. For comparison, additional samples were included to ascertain how MBD2-dependent changes compared with those induced by the DNA methyltransferase inhibitor, 5-aza-2-deoxy-cytidine (5-aza-dC). Quantitative PCR results were clustered into groups using self-organizing map analysis (Fig. 4A). Discrete clusters of tumor suppressor genes were induced by MBD2 knockdown primarily (n = 7, 15%), 5-aza-dC primarily (4 μmol/L, n = 30, 67%), or both in additive fashion (n = 11, 24%, Fig. 4A). The cluster of genes induced primarily by MBD2 included FHIT, HOXA5, DAPK1, GPC3, ADAM23, MASPIN, and THRB [fold induction ranged from 8.0 (GPC3) to 446.4 (DAPK1), P < 0.0001].

To further explore the role of MBD2 in silencing this discrete group of tumor suppressor genes, siRNA oligonucleotides targeted against each gene in the MBD2 selectively derepressed cluster were transfected into pooled stable MBD2 knockdown MCF-7 clones. Specific and isolated knockdown of each individual MBD2 target gene was observed and in each case did not affect expression of any other gene in the qPCR assay panel (Fig. 4B). These results suggest that genes in the MBD2-dependent cluster are regulated in parallel, nonoverlapping pathways downstream of MBD2; that is, the genes are downstream targets of MBD2 and not of one another.

An shRNA-resistant MBD2 expression construct was generated by introducing a silent point mutation into the shRNA binding site of the MBD2 cDNA. The shRNA-resistant construct allowed restoration of functional levels of MBD2 protein in stable MBD2 shRNA expressing clones (Fig. 4C). Restoration of MBD2 protein in knockdown clones led to resuppression of MBD2-dependent
tumor suppressor gene expression (Fig. 4D). This finding is consistent with the observed stability of promoter CpG methylation following MBD2 knockdown and further supports the hypothesis that MBD2 is acting as an upstream node with respect to a network of tumor suppressor gene targets in breast cancer.

Reexpression of MBD2 restores in vitro growth potential of breast cancer cells
To determine whether restoration of MBD2 protein led to a reversal of the growth inhibition observed in MBD2 knockdown lines, pooled stable shRNA-resistant MBD2 and vector control MDA-MB-435 clones were selected and subsequently infected with an shMBD2-targeting lentivirus as described previously. Once again, the resistant MBD2 protein was expressed at significant levels in shMBD2-expressing cells (Fig. 5A), whereas MBD2 levels remained low in shMBD2-transduced vector controls. The resistant MBD2-expressing cells were refractory to the growth inhibition imposed by shMBD2 lentivirus (Fig. 5B and C), showing the effect of MBD2 knockdown on growth was both specific and reversible.

Discussion
Breast cancer cells, like many tumor types, accumulate epigenetic abnormalities during the progression from normal epithelium to frank carcinoma. A ubiquitous and early change in breast cancer is the abnormal hypermethylation of tumor suppressor–associated CpG islands (3, 19, 33–35). Therapies that target global DNA methylation are under
study but are incapable of discriminating between normal and pathologic DNA methylation and could therefore have untoward effects, especially during early stages of tumor progression. We have explored a more selective approach for reactivating transcription of hypermethylated gene targets that is specific, effective, and safe in nonneoplastic tissues. MBD2 has been shown to mediate silencing of methylated genes through targeted recruitment of a p66a, Mi-2, and histone deacetylase–containing nuclear remodeling and deacetylase (NuRD) corepressor complex (36–38). Inhibition of MBD2 function provides an alternate, targeted approach for reactivating epigenetically silenced tumor suppressor genes in cancer.

Double-stranded shRNA mediated knockdown of MBD2 was used to study the function of this protein in breast cancer cells and revealed that depletion of MBD2 led to changes in tumor suppressor gene expression and cell growth inhibition consistent with the hypothesis that breast cancer cell growth is dependent on this protein. The present studies of the gene expression changes induced by MBD2 knockdown in cultured breast cancer lines reveal insight into the function of this pleotropic protein and provide a mechanistic framework for phenotypic changes. We now posit that MBD2 knockdown offers an alternative and more targeted approach to methylated tumor suppressor gene reactivation than global DNA methyltransferase inhibition.
In support of this proposition, we found that only a subset of the tumor suppressor genes examined were transcriptionally reactivated in MBD2 knockdown breast cancer cells. Furthermore, patterns of gene expression in MBD2 knockdown cells differed from those induced by 5-aza-dC treatment. The finding that MBD2 knockdown and 5-aza-dC induce nonoverlapping gene sets is further consistent with the notion that layered epigenetic mechanisms are responsible for maintaining tumor suppressor silencing and lends support to the idea that treatment with 5-aza-dC alone may be insufficient for global methylated gene reactivation, particularly at developmentally regulated and tissue-specific genes marked by multivalent epigenetic modifications (39, 40). In addition, it is reasonable to infer from these data that the function of other MBDs is not entirely redundant with that of MBD2 at least at a consequent subset of tumor suppressor genes in breast cancer. This is not surprising given published data that show that other MBDs are capable of binding to specific methylated and silent tumor suppressor genes (18, 41). Recent studies of the structure of MBD2 bound to a methylated gene target sequence suggest that sequence context may direct this preferential binding of MBD2 to certain CpG rich regions (42).

As expected, the promoter-associated CpG islands of genes induced by MBD2 knockdown were heavily methylated, consistent with the proposed mechanism of action of this protein. Moreover, ChIP experiments confirm direct binding of MBD2 at the CpG-rich promoters of hypermethylated and silent tumor suppressor genes, once again implying CpG island–associated genes are being reactivated in MBD2 knockdown cell populations through depletion of promoter-bound MBD2. Notably, the MBD2 knockdown model offers a powerful system for studying the temporal dynamics of methylation and transcription. Somewhat surprisingly, the methylation status of MBD2-bound regions did not change following depletion of MBD2 with ensuing transcriptional activation. This observation suggests either that passive demethylation is not a direct consequence of gene transcription or that it can be overwhelmed by active maintenance of CpG methylation at certain CpG rich sites.

Remarkably, MBD2 knockdown produced profound and sustained growth inhibition in highly aggressive human breast cancer cell lines in culture. In addition, the ability of aggressive breast cancer cell lines, including triple-negative and Ras mutant lines, to form tumors in nude mice was significantly impaired by MBD2 knockdown. In the case of the MDA-MB435 line, growth was completely suppressed for at least one month. The antiproliferative effects in these breast cancer cells required a significant depletion (70%) but not complete ablation of MBD2. This is in agreement with the observation of Sansom and colleagues (16) that knocking out a single allele of MBD2 reduced adenoma burden in ApcMin mice.

A critical observation is the absolute requirement of persistent MBD2 knockdown to reproducibly inhibit the growth of breast cancer cells. In preliminary experiments in which we transiently transfected siRNA, we achieved a rapid knockdown of MBD2, but the depletion was short lived and induced only a mild and transient effect on cell growth (data not shown).

An integrating lentivirus-based stable shRNA delivery system proved to rapidly yield stable knockdown populations and was therefore used to determine the effect of MBD2 depletion growth. Interestingly, the maximum effect on growth that occurred after FACS purification of transduced cells took between 1 and 2 weeks to develop. We postulate that effects on downstream targets leading to the activation of cytostatic pathways required this lag period to reach peak activity, although the exact basis...
for this lag remains unknown. It is interesting to speculate whether a gradual epigenetic reprogramming is occurring in MBD2 knockdown tumor cells, following a delayed onset model analogous to the reprogramming of iPS cells (43, 44). The observation that sustained depletion of MBD2 for 7 to 14 days is required to suppress tumor growth provides a framework for revisiting previous studies using transient-transfection methods that showed MBD2–dependent tumor suppressor silencing without a corresponding major effect on tumor growth over a few days of observation (13, 41, 45, 46). Interestingly, recent and ongoing trials with low-dose regimens of 5-aza-dC are yielding promising clinical results, suggesting that extended treatments leading to a delayed but durable response may provide a valuable model for effective application of epigenetic therapies in the future (47, 48).

Significant variation was observed among breast cancer cell lines with respect to the degree of growth suppression produced by MBD2 knockdown. These variations paralleled differences in patterns of CpG island methylation as well as differences in the spectrum of gene-expression changes observed among MBD2 knockdown lines. Undoubtedly, the full spectrum of phenotypic changes in a given cell line depends not only on the function of MBD2 but on variable cytosine methylation levels, differential expression of other epigenetic modifiers, and on coexisting genetic lesions that fundamentally cripple particular biochemical pathways (e.g., cell-cycle arrest and apoptosis). Our results also suggest that the greatest effect of MBD2 knockdown on cell growth occurs in the most aggressive breast cancer lines including those with so-called triple-negative and basal-like phenotypes. The dependence of MBD2-induced growth on patterns of methylation, specific biochemical pathways, or specific modifying factors in breast cancer warrants further study to determine whether these tumors might ultimately respond to MBD2 inhibition in patients.

MBD2 knockdown resulted in distinct changes in the morphology of breast cancer cells, which began to more closely resemble their normal counterparts in culture. Moreover, MBD2 knockdown clones of MCF-7 showed a change in 3D morphology reminiscent of normal glandular epithelial architecture. This observation suggests that changes in morphology and proliferation are likely to be mechanistically linked under the influence of epigenetic forces. It is conceivable that the net function of MBD2 knockdown is to restore elements of normal epithelial differentiation in mammary-derived tumors. Consistent with this notion is the acknowledged role of DNA methylation in tissue-specific gene expression patterning during development (49, 50). This normal pattern of gene expression is fundamentally disrupted in tumors, at least in part through epigenetic modifications. Of importance in determining whether MBD2 inhibition is a viable treatment strategy for human tumors is the need to account for the effects of MBD2 on normal tissues, for example, normal epithelium and bone marrow. Such normal, mitotically active tissues are known sites of off-target effects that limit the potential tolerability of cytotoxic therapy. There is good reason to believe MBD2 inhibition will not have major adverse effects on normal tissues based on the minimum phenotype of MBD2 null mice (9, 14, 51–53).

In summary, the work presented here strongly supports a pathologic role for MBD2 in the growth and in vivo survival of breast cancer through its function in binding methyl-CpG and mediating the transcriptional inactivation of tumor suppressor genes as depicted in Fig. 6. We find that stable MBD2 depletion by targeted shRNA leads to reexpression of selected tumor suppressor genes, a number of which appear to be directly regulated, suggesting a lack of redundancy in the inhibitory function of MCBPs on transcription of specific targets. Restored tumor suppressor expression is associated with growth inhibition and a more significant change in 3D morphology reminiscent of normal glandular epithelial architecture. This observation suggests that changes in morphology and proliferation are likely to be mechanistically linked under the influence of epigenetic forces. It is conceivable that the net function of MBD2 knockdown is to restore elements of normal epithelial differentiation in mammary-derived tumors. Consistent with this notion is the acknowledged role of DNA methylation in tissue-specific gene expression patterning during development (49, 50). This normal pattern of gene expression is fundamentally disrupted in tumors, at least in part through epigenetic modifications. Of importance in determining whether MBD2 inhibition is a viable treatment strategy for human tumors is the need to account for the effects of MBD2 on normal tissues, for example, normal epithelium and bone marrow. Such normal, mitotically active tissues are known sites of off-target effects that limit the potential tolerability of cytotoxic therapy. There is good reason to believe MBD2 inhibition will not have major adverse effects on normal tissues based on the minimum phenotype of MBD2 null mice (9, 14, 51–53).

In summary, the work presented here strongly supports a pathologic role for MBD2 in the growth and in vivo survival of breast cancer through its function in binding methyl-CpG and mediating the transcriptional inactivation of tumor suppressor genes as depicted in Fig. 6. We find that stable MBD2 depletion by targeted shRNA leads to reexpression of selected tumor suppressor genes, a number of which appear to be directly regulated, suggesting a lack of redundancy in the inhibitory function of MCBPs on transcription of specific targets. Restored tumor suppressor expression is associated with growth inhibition and a more significant change in 3D morphology reminiscent of normal glandular epithelial architecture. This observation suggests that changes in morphology and proliferation are likely to be mechanistically linked under the influence of epigenetic forces. It is conceivable that the net function of MBD2 knockdown is to restore elements of normal epithelial differentiation in mammary-derived tumors. Consistent with this notion is the acknowledged role of DNA methylation in tissue-specific gene expression patterning during development (49, 50). This normal pattern of gene expression is fundamentally disrupted in tumors, at least in part through epigenetic modifications. Of importance in determining whether MBD2 inhibition is a viable treatment strategy for human tumors is the need to account for the effects of MBD2 on normal tissues, for example, normal epithelium and bone marrow. Such normal, mitotically active tissues are known sites of off-target effects that limit the potential tolerability of cytotoxic therapy. There is good reason to believe MBD2 inhibition will not have major adverse effects on normal tissues based on the minimum phenotype of MBD2 null mice (9, 14, 51–53).

In summary, the work presented here strongly supports a pathologic role for MBD2 in the growth and in vivo survival of breast cancer through its function in binding methyl-CpG and mediating the transcriptional inactivation of tumor suppressor genes as depicted in Fig. 6. We find that stable MBD2 depletion by targeted shRNA leads to reexpression of selected tumor suppressor genes, a number of which appear to be directly regulated, suggesting a lack of redundancy in the inhibitory function of MCBPs on transcription of specific targets. Restored tumor suppressor expression is associated with growth inhibition and a more significant change in 3D morphology reminiscent of normal glandular epithelial architecture. This observation suggests that changes in morphology and proliferation are likely to be mechanistically linked under the influence of epigenetic forces. It is conceivable that the net function of MBD2 knockdown is to restore elements of normal epithelial differentiation in mammary-derived tumors. Consistent with this notion is the acknowledged role of DNA methylation in tissue-specific gene expression patterning during development (49, 50). This normal pattern of gene expression is fundamentally disrupted in tumors, at least in part through epigenetic modifications. Of importance in determining whether MBD2 inhibition is a viable treatment strategy for human tumors is the need to account for the effects of MBD2 on normal tissues, for example, normal epithelium and bone marrow. Such normal, mitotically active tissues are known sites of off-target effects that limit the potential tolerability of cytotoxic therapy. There is good reason to believe MBD2 inhibition will not have major adverse effects on normal tissues based on the minimum phenotype of MBD2 null mice (9, 14, 51–53).

In summary, the work presented here strongly supports a pathologic role for MBD2 in the growth and in vivo survival of breast cancer through its function in binding methyl-CpG and mediating the transcriptional inactivation of tumor suppressor genes as depicted in Fig. 6. We find that stable MBD2 depletion by targeted shRNA leads to reexpression of selected tumor suppressor genes, a number of which appear to be directly regulated, suggesting a lack of redundancy in the inhibitory function of MCBPs on transcription of specific targets. Restored tumor suppressor expression is associated with growth inhibition and a more significant change in 3D morphology reminiscent of normal glandular epithelial architecture. This observation suggests that changes in morphology and proliferation are likely to be mechanistically linked under the influence of epigenetic forces. It is conceivable that the net function of MBD2 knockdown is to restore elements of normal epithelial differentiation in mammary-derived tumors. Consistent with this notion is the acknowledged role of DNA methylation in tissue-specific gene expression patterning during development (49, 50). This normal pattern of gene expression is fundamentally disrupted in tumors, at least in part through epigenetic modifications. Of importance in determining whether MBD2 inhibition is a viable treatment strategy for human tumors is the need to account for the effects of MBD2 on normal tissues, for example, normal epithelium and bone marrow. Such normal, mitotically active tissues are known sites of off-target effects that limit the potential tolerability of cytotoxic therapy. There is good reason to believe MBD2 inhibition will not have major adverse effects on normal tissues based on the minimum phenotype of MBD2 null mice (9, 14, 51–53).
organized pattern of growth in 3-D culture models, in addition to tumor clearance in animals. Based on the studies reported here, we conclude that targeting MBD2 may be a viable strategy for inhibiting the proliferation of human breast cancer. Given the striking effect in triple-negative breast cancer cell lines, this approach may lead to much-needed targeted therapy for these aggressive tumors.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

34. Dumont N, Crawford YG, Sigaroudinia M, Nagrani SS, Wilson MB, Buehring GC, et al. Human mammary cancer progression model recapitulates methylation events associated with breast prema-

Methyl Binding Domain Protein 2 Promotes the Growth of Breast Cancer

Grant Support

The work is financially supported by NCI R01 CA87496, the Breeden-Adams Foundation (G.D. Ginder), and NCI P30 CA016059 (Biological Macromolecule Core, Flow Cytometry and Imaging Core) Massey Cancer Center.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 2, 2011; accepted June 3, 2011; published OnlineFirst June 21, 2011.

Methyl-Binding Domain Protein 2–Dependent Proliferation and Survival of Breast Cancer Cells

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-11-0252

Supplementary Material
Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2011/07/22/1541-7786.MCR-11-0252.DC1

Cited articles
This article cites 47 articles, 19 of which you can access for free at:
http://mcr.aacrjournals.org/content/9/8/1152.full.html#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
/content/9/8/1152.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.