Long-Range Epigenetic Silencing Associates with Deregulation of Ikaros Targets in Colorectal Cancer Cells

Biola M. Javierre1, Javier Rodriguez-Ubreva1, Fatima Al-Shahrour3,4, Marina Corominas1, Osvaldo Graña5, Laura Ciudad1, Xabier Agirre6, David G. Pisano5, Alfonso Valencia5, Jose Roman-Gómez7, Maria Jose Calasanz8, Felipe Prosper6, Manel Esteller2, Rogelio Gonzalez-Samienta9, and Esteban Ballestar1

Abstract

Transcription factors are common targets of epigenetic inactivation in human cancer. Promoter hypermethylation and subsequent silencing of transcription factors can lead to further deregulation of their targets. In this study, we explored the potential epigenetic deregulation in cancer of Ikaros family genes, which code for essential transcription factors in cell differentiation and exhibit genetic defects in hematologic neoplasias. Unexpectedly, our analysis revealed that Ikaros undergoes very specific promoter hypermethylation in colorectal cancer, including in all the cell lines studied and around 64% of primary colorectal adenocarcinomas, with increasing proportions in advanced Duke’s stages. Ikaros hypermethylation occurred in the context of a novel long-range epigenetic silencing (LRES) region. Reintroduction of Ikaros in colorectal cancer cells, ChIP-chip analysis, and validation in primary samples led us to identify a number of direct targets that are possibly related with colorectal cancer progression. Our results not only provide the first evidence that LRES can have functional specific effects in cancer but also identify several deregulated Ikaros targets that may contribute to progression in colorectal adenocarcinoma.

Mol Cancer Res; 9(8); 1139–51. © 2011 AACR.

Introduction

Epigenetic dysregulation of gene silencing plays a causal role in cancer development and progression. One of the most common epigenetic alterations in cancer results from de novo DNA methylation of promoter CpG islands (1). Initial studies using candidate gene approaches showed that many tumor suppressor genes undergo aberrant hypermethylation in cancer and that these events occur in a tumor type–specific manner (2, 3). More recently, the use of genome-wide screening techniques has shown that hypermethylation in cancer occurs in different groups of genes, including those encoding transcription factors involved in tissue-specific differentiation and development (4). Various chromatin factors that are important in maintaining a normal silenced transcription status in a cell type–specific manner are now known to play a pivotal role in determining which genes become hypermethylated in cancer, when aberrantly used by the DNA methylation machinery. For instance, polycomb-induced H3K27 trimethylation, which is involved in gene silencing during development, associates with DNA hypermethylation in cancer (5, 6). More recently, genome-wide surveys have uncovered other mechanisms. For instance, Frigola and colleagues found coordinated hypermethylation of 12 closely located CpG islands in colorectal cancer (7) and recent data suggest that concurrent hypermethylation of adjacent CpG islands and associated gene repression, also known as long-range epigenetic silencing (LRES), may be a more common phenomenon in cancer than previously recognized (8–11).

It is inherently interesting to investigate the functional consequences of the epigenetic inactivation of particular genes. Transcription factor–encoding genes often undergo cancer-associated hypermethylation and their silencing can result in further deregulation of their target genes. In this study, we focused on the epigenetic deregulation in cancer of the Ikaros family of transcription factors, which are essential regulators of cell differentiation (12). The family
consists of five members (Ikaros, Helios, Aiolos, Eos, and Pegasus), which arose from multiple duplication events. Ikaros family members share similarities at several levels. For instance, Ikaros, Helios, Aiolos, and Eos have identical splicing patterns that generate multiple isoforms with similar combinations of exons. Another similarity among Ikaros family genes involves their surrounding sequences, where the colocalization of homologous neighboring genes is preserved. In parallel, Ikaros family genes are expressed in overlapping cell types, suggesting the conservation of transcription factors and epigenetic mechanisms that regulate their expression. These factors are characteristic of the hematopoietic system and are specifically expressed at different stages of the lymphoid branch. Recent studies highlight the importance of genetic alterations undergone by Ikaros family members in various hematologic neoplasias (13–15).

We sought to establish whether the Ikaros family genes were epigenetically deregulated in human cancer. We observed an almost complete absence of hypermethylation in most tumor types including hematologic neoplasias. However, for Ikaros, we found promoter hypermethylation in all colorectal cancer cell lines studied and in more than 60% of primary colorectal cancer samples. Interestingly, we found that Ikaros is embedded in an LRES region that undergoes additional silencing in colorectal adenocarcinoma. ChIP-chip analysis following reintroduction of Ikaros allowed us to identify a number of Ikaros targets in colorectal cancer with a potential role in its development and progression. Our results are of 2-fold interest: first, LRES has specific functional effects in cancer through deregulation of Ikaros gene targets; second, we have defined in vitro methylated DNA (IVD) is used as a positive control. C, methylation analysis of the 4 promoter CpG island in leukemia and colorectal cancer (ac) cell lines. The presence of a PCR band under lanes M or U indicates methylated or unmethylated, respectively. In parallel, Ikaros family genes in a panel of hematologic neoplasia cell lines and additional cell lines (colorectal, lung and breast adenocarcinomas, neuroblastomas, and gliomas). Blue and red squares respectively indicate unmethylated and methylated status.

Figure 1. Ikaros displays a specific pattern of hypermethylation in colorectal adenocarcinoma. A, diagram depicting CpG distribution in all Ikaros family genes between −1,000 bp to +1,000 bp relative to the TSS (indicated by an arrow). CpG sites are represented as vertical black lines and CpG islands are highlighted by horizontal blue bars. Promoter regions analyzed by MSP and BS are respectively indicated by gray and black bars. B, MSP analysis of Ikaros promoter CpG island in leukemia and colorectal cancer (ac) cell lines. The presence of a PCR band under lanes M or U indicates methylated or unmethylated, respectively. In vitro methylated DNA (IVD) is used as a positive control. C, methylation analysis of the 4 promoter CpG island in leukemia and colorectal cancer (ac) cell lines. The presence of a PCR band under lanes M or U indicates methylated or unmethylated, respectively. In vitro methylated DNA (IVD) is used as a positive control. C, methylation analysis of the 4 promoter CpG island in leukemia and colorectal cancer (ac) cell lines. The presence of a PCR band under lanes M or U indicates methylated or unmethylated, respectively. In vitro methylated DNA (IVD) is used as a positive control.
number of targets with a potential role in cancer progression.

Material and Methods

Human cancer cell lines and primary tumor samples

The 102 human cancer cell lines examined were from the American Type Culture Collection and the German Collection of Microorganisms and Cell Cultures (DSMZ). Thirteen tumor types (acute myeloid leukemias, acute lymphoblastic leukemias, lymphomas, colorectal, lung, breast, cervix, ovarian adenocarcinomas, epithelial adenocarcinomas, neuroblastomas, gliomas, osteosarcomas, and teratocarcinomas) were included. DKO, an HCT-116–derived cell line in which 2 major DNA methyltransferases (DNMT1 and DNMT3b) are genetically disrupted, and colorectal adenocarcinoma cell lines (COLO-320, HCT-15, RKO, SW48, SW480, SW620, and SW1116). Right, the results of a ChIP experiment where association of the polycomb group protein EZH2, H3K27me3 (repressive mark), and histone H3K4me3 (activating mark) for the aforementioned genes is shown. HOXB13 is included as a positive control of EZH2 binding and H3K27me3 association. DLBCL, diffuse large B-cell lymphomas.

DNA methylation analysis

DNA methylation analysis was conducted by PCR analysis of bisulfite-modified genomic DNA. Genomic DNA extracted by standard methods was converted by bisulfite modification as described elsewhere (16). The DNA methylation status of all Ikaros family genes was determined by methylation-specific PCR (MSP; ref. 16) and bisulfite genomic sequencing (BS) of a minimum of 10 clones. Primers were designed using the Methyl Primer Express v.1.0 Program (Applied Biosystems; Supplementary Table S1). Quantitative RT-PCR was carried out in triplicate using 2× SYBR Green PCR Master Mix (Applied Biosystems). PCR reactions were run and analyzed using the Prism 7700 Sequence Detection System (Applied Biosystems). Expression values were normalized against the expression of the endogenous gene controls RPL38, HPRT1, and GAPDH.

For Western blot analyses, nuclear proteins were extracted, purified, and immunoprobed with antibodies against Ikaros (rabbit polyclonal, dilution 1:300; sc-13039; Santa Cruz Biotechnology), Flag M2 (mouse monoclonal, dilution 1:1,000; F1804; Sigma), and Nucleolin (rabbit polyclonal, dilution 1:1,000, sc-13057; Santa Cruz Biotechnology).
Other antibodies used included anti-Meis2 (SAB2101465), anti-Grx7 (SAB25004872), anti-NHLH1 (SAB2101588), anti-b-actin (A3854; Sigma-Aldrich), anti-GRM2 (19956-1-AP; Protein Tech group), anti-Ptpn6 (610126; BD), and anti-JMJD12 (NB100-77282; Novus Biologicals).

Chromatin immunoprecipitation assay and ChIP-chip analysis

Chromatin was cross-linked by treating cells for 15 minutes with 1% formaldehyde. Then, chromatin was sheared with a Bioruptor (Diagenode) to an average length of 500 bp. Chromatin immunoprecipitation (ChIP) assays were conducted with the aforementioned Ikaros and Flag-M2 antibodies. We also used anti-3meK4H3 (Millipore; 17-614) and anti-3meK27H3 (Millipore; 07-449) to check the presence of these histone modifications at specific sites. Anti-H3 (Abcam; ab 1791) was used as a positive control. In ChIP assays, 5 to 10 mg of each antibody was added to each reaction. Immunoprecipitated chromatin was analyzed by conventional and quantitative PCR. Primers were designed using Primer3 v.0.4.0 (Supplementary Table S1). For the genomic study, immunoprecipitated chromatin was also hybridized in the Human Promoter ChIP-on-chip Microarray Set (Agilent), which analyzes approximately 17,000 of the best-defined human transcripts represented, as defined by RefSeq. Three independent ChIP experiments were carried out for each antibody and the immunoprecipitated material was amplified with a Sigma GenomePlex WGA kit as described (17). Amplified pooled bound and unbound DNA portions were labeled with distinct fluorophores and cohybridized in the microarrays. Genomic segments bound by Ikaros show enrichment of chromatin-immunoprecipitated DNA over the total genomic reference DNA.

Following hybridization, Agilent’s Feature Extraction software and ChIP Analytics software were used to quantify images and identify probes corresponding to regions or segments of chromatin that were bound by Ikaros, respectively. Blank subtraction normalization, interarray median normalization, and intra-array (dye-bias) median normalization were applied. Whitehead Error Model v.1.0 and Whitehead Per-Array Neighborhood Model v.1.0 were used with default settings for error modeling and peak detection/evaluation, respectively. Genes common to both anti-Ikaros and anti-Flag-M2 with a greater than 2-fold change were considered to be relevant.

Immunofluorescence

Cells were fixed with 4% paraformaldehyde for 30 minutes at room temperature, permeabilized in 0.1% Triton X-100 in PBS for 10 minutes, and stained with the primary antibodies described above. Signals were detected with Alexa Fluor 488–conjugated anti-mouse and anti-rabbit antibodies (Invitrogen) and 4′,6-diamidino-2-phenylindole (DAPI). Fluorescent images were acquired using a Leica SP5 spectral scanning confocal microscope.

Immunohistochemistry

Two tissue microarray blocks, constructed with duplicate 1-mm diameter cylinders placed on slides coated with 3-aminopropyltriethoxysilane were used. Seventy-four samples were analyzed including 5 normal colon, 7 controls, and 62 biopsies of colon adenocarcinomas. Microwave antigen retrieval and endogenous peroxidase activity and nonspecific binding site blocks were measured. A dilution of 1:10 of antibody against Ikaros as the primary antibody and a dilution of 1:500 of anti-goat as the link were used. Signals were amplified by an indirect Novolink Polymer method (Novocastra) and a 3,3′-diaminobenzidine (DAB) peroxidase developing process coupled with hematoxylin staining was used for detection. Images were acquired using a Leica DM6000B microscope.

Table 1. Methylation analysis of Ikaros and Aiolos promoter CpG islands in different human leukemia and colorectal adenocarcinoma cell lines and biopsies

<table>
<thead>
<tr>
<th>Type</th>
<th>Subtype</th>
<th>n</th>
<th>Methylation, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ikaros</td>
</tr>
<tr>
<td>Leukemia</td>
<td>AML</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AML t(8;21)</td>
<td>16</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>ALL</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CML</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>Burkitt</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>DLBCL</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Follicular</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Mantle</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Nodal</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Splenic</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Normal lymphocyte</td>
<td>A Dukes</td>
<td>27</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>B Dukes</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>C Dukes</td>
<td>22</td>
<td>77.3</td>
</tr>
<tr>
<td></td>
<td>D Dukes</td>
<td>22</td>
<td>81.8</td>
</tr>
<tr>
<td>Normal colon</td>
<td>27</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Normal lung</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Breast adenocarcinoma</td>
<td>69</td>
<td>29.9</td>
<td>0</td>
</tr>
<tr>
<td>Normal breast</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>54</td>
<td>27.8</td>
<td>3.7</td>
</tr>
<tr>
<td>Glioma</td>
<td>38</td>
<td>50</td>
<td>13.1</td>
</tr>
<tr>
<td>Normal brain</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: Colorectal samples are classified into Duke’s stages. Fisher’s exact test has been used to detect significant differences in methylation between Duke’s stages in primary colorectal tumors.

Abbreviations: AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CML, chronic myeloid leukemia.

*Used as positive control of nonmethylation.
Colony formation, cell viability, and doubling time assays

For functional assays, pcDNA3.1-Flag-Ikaros was transfected by electroporating 10^7 cells with 40 µg of the vector at 250 V and 975 µF. For colony formation assays, different dilutions of transfected cells were plated and cultured at 37°C in a humidified atmosphere of 5% CO_2/95% O_2. After 48 hours of transfection, 500 µg/mL of G418 selection drug was added to the medium. Colonies were fixed and stained with MTT. In cell viability analysis, different dilutions of transfected cells were plated and cultured at 37°C in 5% CO_2/95% O_2 for 5 days. Each day, cells were fixed and stained with MTT and treated with dimethyl sulfoxide. Cell quantities were determined by measuring the optical density at 560 nm. In doubling time assays, the mean time for cell division was measured by counting cells in a Neubauer chamber after treatment with 0.05% trypsin and 0.02% EDTA and trypan blue exclusion. All assays were conducted in triplicate.

Results

Ikaros undergoes distinctive cancer-associated hypermethylation among its homologous family members

To investigate the potential cancer-associated hypermethylation of Ikaros family genes, we chose those with bona fide promoter CpG islands, that is, Ikaros, Helios, Aiolos, and Pegasus (Fig. 1A), whereas Eos, which has a short CpG island around 400 bp downstream of its transcription start site (TSS), was excluded. We conducted DNA methylation screening by MSP and BS in a panel of cell lines that included many tumor types such as hematologic neoplasias, breast, colorectal and lung cancer, neuroblastoma, glioblastoma, and others. The 4 gene promoters were unmethylated in most cell lines (79 of 102) including hematologic cancer cell lines (Fig. 1B and C). These gene promoters were also unmethylated in normal T and B cells, monocytes, and neutrophils (Supplementary Fig. S1). Unexpectedly, the promoter CpG island of Ikaros was densely methylated in all the colorectal cancer cell lines studied (13 of 13; Fig. 1C and Supplementary Fig. S1) but not in normal intestinal tissue (Supplementary Fig. S1).

To determine whether Ikaros promoter hypermethylation was also present in primary colorectal tumor samples, we carried out MSP and BS in 91 primary tumor samples, for 27 of which normal matching intestinal samples from the same individuals were available. We observed that around 64% were methylated for Ikaros. In contrast, none of the normal 27 paired samples was methylated for Ikaros, confirming that Ikaros is exclusively methylated in cancer (Table 1 and Supplementary Fig. S1). The proportion of methylated cases increased with advancing Duke’s stage (Table 1; 29.6% A; 75.0% B; 77.3% C; and 81.8% D). The χ² test confirmed that the increased proportion of hypermethylation between the 3 more...
advanced Duke’s stages (B–D) and A Duke’s stage samples was significant (P = 0.0035; P = 0.0039; P = 0.0005), indicating that Ikaros hypermethylation could be used as a marker of colorectal cancer progression. No significant correlations were found between hypermethylation and age (P = 0.792), gender (P = 0.094), or tumor localization (P = 0.643) as concluded after using χ² test.

Ikaros’ very specific promoter hypermethylation in colorectal cancer cell lines and primary colorectal tumors was particularly striking when compared with the absence of DNA methylation found for all other Ikaros family members, with whom Ikaros shares abundant similarities at the regulatory level. For instance, Ikaros, Helios, and Aiolos had similar expression levels for lymphoid neoplasias (highly expressed) and colorectal cancer cell lines (low expression levels; Fig. 1D, left). We wondered whether different methylation status of Ikaros in colorectal cancer cells was associated with a distinctive histone modification profile at its promoter. Specifically, we compared the presence at the Ikaros, Helios, and Aiolos promoters of histone H3 K4 trimethylation (H3K4me3), associated with active transcription, trimethylation of K27 H3 (H3K27me3), that correlates with repression, and association of the member of the polycomb group family EZH2, which often correlates with CpG island hypermethylation (5, 6) and targets H3K27me3. The activating mark H3K4me3 was present in Jurkat T cells for all 3 gene promoters, consistent with transcription of these genes in T cells, whereas it was absent from HCT-116 colorectal cancer cells (Fig. 1D, right). EZH2 and H3K27me3 were absent at the Ikaros and Helios gene promoters in both Jurkat and HCT-116 cells. The only gene that had EZH2 and H3K27me3 associated with its promoter in colorectal cancer cells was Aiolos, which does not undergo hypermethylation (Fig. 1D, right). In conclusion, specific hypermethylation of Ikaros in colorectal cancer cells did not correlate with EZH2 association at its promoter.

Ikaros is located in an LRES region and undergoes methylation in colorectal cancer

As mentioned above, recent genome-scale analyses have identified large chromosomal regions containing several CpG island often hypermethylated and transcriptionally repressed termed as LRES (7–11, 18). LRES is frequent in colorectal cancer (7, 11). Given the absence of EZH2 targeting to the Ikaros promoter, we wondered whether its hypermethylation in colorectal cancer is associated with an LRES event. To address this possibility, we analyzed all the CpG islands within a 2-Mb region centered on Ikaros promoter in normal T and B cells and in normal intestinal cells. This region located on chromosome 7p12.1–7p12.2 contains 10 CpG islands, including the VWC2, ZPB, Ikaros, FIGNL1, and COBL promoters, 2 intergenic regions, and the 2 CpG
islands associated with 2 alternative TSS of the imprinted gene GRB10 (19). Our results showed that this 2-Mb region exhibits a complex pattern of CpG island methylation where 4 of the 10 CpG islands are methylated in normal cells (Fig. 2). In all colorectal cancer cell lines, we observed that at least 3 additional CpG islands in the region, including Ikaros, VWC2, and FIGNL1 promoters, are hypermethylated (Fig. 2). We also determined the methylation status of these CpG islands for the glioma (U-87 MG) and breast cancer (MDA-MB-231) cell lines for which Ikaros is hypermethylated (Fig. 1D). Again, we observed that those cell lines had 7 of the 10 CpG islands at 7p12.1-7p12.2 hypermethylated (not shown). We observed an identical pattern of CpG island methylation in primary colorectal adenocarcinoma samples (Fig. 2 and Supplementary Fig. S2A).

Remarkably, when analyzing the potential relationships between the DNA methylation status of VWC2 and FIGNL1 and Duke’s stage, the results obtained were not statistically significant (P = 0.753; P = 0.820; Supplementary Fig. S2B and C), in contrast with those obtained for Ikaros, suggesting that the spread of methylation in the region during cancer progression varies from gene to gene within the LRES band.

To address whether the hypermethylated status of these CpG islands at 7p12.1-7p12.2 was associated with a specific profile of histone modifications, we analyzed the presence of H3K4me3 and H3K27me3 in Jurkat T cells, where Ikaros and FIGNL1 are nonmethylated (Fig. 3A), and the colorectal cancer cell lines HCT-116 and RKO, where 8 of the 10 CpG islands are hypermethylated including Ikaros, VWC2, and FIGNL1 (Fig. 3A). In general, the entire region exhibited enrichment in the repressive mark H3K27me3, and very low levels of the active mark H3K4me3 were observed (Fig. 3B). Interestingly, Ikaros and FIGNL1 had H3K4me3 associated to their promoters in Jurkat T cells, where these 2 genes are nonmethylated. In contrast, these 2 genes had lower levels or absence of this mark in HCT-116 and RKO cells, where they are hypermethylated. We treated these 3 cell lines with the demethylating agent 5-aza-dC and observed that induced demethylation of these genes resulted in reactivation of most genes, except those situation where the genes were already demethylated like Ikaros or FIGNL1.

Figure 3. (Continued) C, expression data for the 7 genes within the 7p12.1-7p12.2 region in the 3 cell lines before and after treatment with the demethylating agent 5-aza-dC. Data relative to the expression of RPLR38. D, scheme depicting the region centered in Ikaros where 4 CTCF-binding sites (from reference 21; accession number SRA000206) are indicated with black bars. An additional sequence in the region was as a negative control (indicated with an empty bar). Chip data with anti-CTCF antibodies are presented for Jurkat, RKO, and HCT-116 cells.

www.aacrjournals.org Mol Cancer Res; 9(8) August 2011 1145
in Jurkat cells (Fig. 3C). We wondered whether the observed methylation changes within the region could also associate with changes in the binding of the enhancer-blocking transcription factor CTCF, which is known to bind DNA in a methylation-specific manner (20). For that, we analyzed 4 described CTCF-binding sites in the vicinity of Ikaros (accession number: SRA000206; ref. 21). We also included an additional short sequence in the same region as a negative control for CTCF binding. ChIP analysis of the 4 binding sites revealed reduced association of CTCF to the binding site located in the Ikaros coding region when comparing the 2 colorectal cancer cell lines with Jurkat cells (Fig. 3D).

Complete loss of expression of Ikaros in colorectal cancer is dependent on DNA methylation

Ikaros is primarily expressed at different stages of the lymphoid branch. By using immunostaining, we investigated the levels of Ikaros in primary colorectal tissues and adenocarcinoma samples. Immunohistochemistry revealed the existence of a subset of primary colorectal adenocarcinoma samples and normal colon with positive nuclear staining for Ikaros (Fig. 4A). We also investigated the dependence on DNA methylation for the expression status of Ikaros in the context of intestinal colorectal tissue. We first analyzed the levels of Ikaros mRNA in several colorectal cancer cell lines by quantitative real-time PCR and...
monitored the consequences of treatment with the demethylating agent 5-aza-dC. This treatment resulted in partial demethylation (Supplementary Fig. S1) and the expression of Ikaros. This increase in expression was observed at the mRNA and protein levels, suggesting that expression of Ikaros in these colorectal cancer cell lines is DNA methylation dependent (Fig. 4B–D).

We then compared the transcript levels of Ikaros in normal colon, in which Ikaros is unmethylated, and 2 sets of primary colorectal cancer samples for which we had previously determined the DNA methylation status of the Ikaros promoter CpG island (Table 1). Despite the broad range of Ikaros mRNA levels, we found similar levels of expression of Ikaros between primary tumors samples unmethylated for Ikaros and normal colon, whereas Ikaros-hypermethylated primary samples exhibited absence of expression (Fig. 4E and F).

Ectopic expression of Ikaros in HCT-116 cells

We next explored the functional implications of Ikaros epigenetic silencing in colorectal cells. To this end, we ectopically expressed the full-length isoform of Ikaros in HCT-116 cells. In these experiments, we typically found around 80% of transfection efficiency and confirmed that transfection of Ikaros in colorectal cells was accompanied by expression of the protein and proper nuclear distribution (Fig. 5A).

We then examined whether the presence or absence of Ikaros affected growth. Colony formation assays showed that reintroduction of Ikaros in HCT-116 significantly reduced colony formation (by around 25%; Fig. 5B and C). Cell viability assays were also conducted to compare Ikaros-transfected HCT-116 cells with empty vector–transfected cells. Introduction of Ikaros produced a significant reduction in cell viability (by 25%–30%) as determined by

Figure 5. Functional effects of Ikaros ectopic expression in HCT-116 cells. A, ectopic expression of Ikaros in HCT-116 cells. Top left, efficiency of transfection was estimated to be around 80% by using parallel transfection with a GFP-tagged vector. Top right, expression of Ikaros in HCT-116 cells following transfection as shown by Western blotting. Bottom, cellular localization of Ikaros. Confocal images of HCT-116 cells transfected with Ikaros expression vector or empty vector and labeled with antibodies to Ikaros and M2-FLAG (green). DNA was counterstained with DAPI (blue). B, effect of Ikaros transfection on in vitro colony formation properties of transfected HCT-116 cancer colon cells. Mock-transfected cells are shown in parallel. Examples in triplicate of colony formation assay after a 2-week selection of G418 stained with MTT reagent. C, percentage of colony numbers normalized with focus number of HCT-116 transfected with the empty vector. The HCT-116 mock was set at 100%. Results are an average of triplicates of 3 independent experiments. D, cell viability determined by MTT assay monitoring the number of cells over time after transfecting HCT-116 with Ikaros and the empty vector. E, doubling time of HCT-116 cells transfected with Ikaros and empty vector. Cells were stained with trypan blue and counted over time. Doubling time = time between 2 measurements × ln2/(final concentration/initial concentration). The outcome was measured as the average of triplicates of 3 independent experiments and its SD. GFP, green fluorescent protein.
Ikaros targets in colorectal cells

Given that Ikaros is a transcription factor, we sought to identify targets in the context of colorectal cells. Until now, there are no high-throughput analysis on Ikaros targets, although several studies have identified some in T lymphoid cells (22–24). To determine whether these bona fide Ikaros targets were also directly regulated in the context of colorectal cancer cells, we conducted ChIP assays in both Ikaros-transfected HCT-116 cells and Jurkat T-cell leukemia cells, a well-studied T-cell leukemia cell line, as a positive control. Two antibodies, anti-Ikaros and anti-FLAG, were used. We then amplified the immunoprecipitated material in proximal promoter contexts. Cell lines transfected with Flag-Ikaros expression vector (F-IK) or empty vector (mock) were immunoprecipitated with antibodies against Ikaros or M2-Flag. P values are shown for each comparison (values of P < 0.05 were taken to be statistically significant). The 164 potential targets result from overlapping the results obtained from the 2 different antibodies in Flag-Ikaros-transfected cells and subtracting the values obtained from mock-transfected cells.

To identify Ikaros targets in the context of HCT-116 cells, we conducted ChIP assays and hybridized the immunoprecipitated material in proximal promoter microarrays (Fig. 6B). ChIP assays were conducted in Ikaros- and mock-transfected HCT-116 cells with both anti-Ikaros and anti-FLAG antibodies. We compared the anti-Ikaros and anti-FLAG binding sites in Ikaros-transfected HCT-116 samples with respect to mock-transfected samples to exclude nonspecific signal. In total, we identified 164 Ikaros-bound chromatin segments. Genes common to anti-Ikaros and anti-Flag with a greater than 2-fold change were considered to be relevant (Supplementary Table S2 and see also Fig. 6B). A significant overlap between the anti-Ikaros and anti-FLAG profiles of association was observed. Among the genes identified, we found several genes for which an association with colorectal adenocarcinoma had previously been reported, such as PTPN6 (25), which codes for protein tyrosine phosphatase, nonreceptor type; MEIS2 (26), a homeobox protein coding gene; and GPX7 (27), the glutathione peroxidase 7 gene.

We then sought to confirm the binding of Ikaros to the promoter of a selection of 25 significant genes resulting from the ChIP-chip experiment on the basis of those that were most highly enriched, or that might be relevant to cancer progression (highlighted in blue in Supplementary Table S2). We analyzed expression by quantitative real-time MTT assay (Fig. 5D). Finally, the doubling time of Ikaros transfected was around 10% longer than in empty vector-transfected cells (Fig. 5E).

Figure 6. Analysis of Ikaros targets. A, quantitative ChIP analysis of known Ikaros targets in human hematologic (Jurkat cell line) and colorectal (HCT-116 cell line) contexts. Cell lines transfected with Flag-Ikaros expression vector (F-IK) or empty vector (mock) were immunoprecipitated with antibodies against Ikaros or M2-Flag. P values are shown for each comparison (values of P < 0.05 were taken to be statistically significant). B, diagram depicting the rationale of the ChIP-chip experiment. The 164 potential targets result from overlapping the results obtained from the 2 different antibodies in Flag-Ikaros-transfected cells and subtracting the values obtained from mock-transfected cells.
results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter region of the genes validated above (Fig. 6C, right). Among the genes whose expression levels significantly changed were PTPN6, GRM2, MEIS2, GPX7, NHLH1, HNRPD1, JMJD1A, RAB23, BCL-X, RFT-1, and TRPV2. This decrease is consistent with the repressive role of Ikaros (28). Individual ChIP analysis confirmed the binding of Ikaros to the promoter region of the genes validated above (Fig. 6C, left). The effects on expression were also analyzed at the protein level in the 2 colorectal cancer cell lines HCT-116 and RKO, as well as in Jurkat T cells. Several of these targets, such as GRM2, PTPN6, or MEIS2, showed a decrease in their levels in HCT-116 and RKO cells following reintroduction of Ikaros (Fig. 6D). Altogether, these results indicate that direct binding of Ikaros in the promoter

Ikaros direct targets are deregulated in primary colorectal tumor samples

Our next step was to confirm whether Ikaros targets validated in the context of HCT-116 cells were also deregulated in primary colorectal tumor samples. We carried out quantitative real-time PCR for all primary tumors and found significant differences in the expression levels with respect to the methylation status of Ikaros promoter CpG island in several of the aforementioned genes, including PTPN6, GRM2, MEIS2, and GPX7 (Supplementary Fig. S3). This result reinforces the notion that Ikaros epigenetic inactivation may directly affect the upregulation of these targets in the context of colorectal cancer.
Discussion

Our results provide evidence that an LRES event is associated with hypermethylation of the *Ikaros* promoter CpG island and that *Ikaros* epigenetic silencing results in the deregulation of several of its targets in the context of colorectal adenocarcinoma. Our initial DNA methylation screening showed that *Ikaros* promoter, in contrast with the rest of the *Ikaros* gene family, is heavily methylated in colorectal cancer cells. We first investigated the potential association of a specific histone modification profile and binding of polycomb group member EZH2 with the promoter of *Ikaros*, as well as all the other members of its family, given the reported relationship between these marks and aberrant hypermethylation in cancer (5, 6). However, no association of EZH2 or relationship between these marks and aberrant hypermethylation with the promoter of *Ikaros* promoter in colorectal cancer cells. We also investigated whether changes in the DNA methylation status of the neighboring regions of *Ikaros* could explain its distinct behavior from that seen in the rest of the family. We found that *Ikaros* is embedded in an LRES region. Our findings suggest that chromosomal context of *Ikaros* is responsible for its distinctive hypermethylation in colorectal adenocarcinoma. This could explain why *Ikaros* behaves differently from the other family members, with which *Ikaros* shares regulatory elements.

The mechanism involved in LRES is under debate. It has been proposed that if some CpG island genes are targeted for methylation, neighboring genes may also be affected by default (10). Perhaps, LRES might be initiated by 1 critical gene target that spreads or conscripts "innocent bystanders," analogous to large genetic deletions (18). In the case of the 7p12.1-12.2 region, we have observed that 4 of the 10 CpG islands in the region are already methylated in normal cells. We can speculate whether *GRB10*, a well-studied imprinted gene (19), is associated with the spread of hypermethylation across this chromosomal region. In all colorectal cancer cell lines and primary adenocarcinomas, as well as in 2 additional breast cancer and glioma cell lines, we have observed hypermethylation of 3 additional CpG islands within the region. Our study reveals that hypermethylation of *Ikaros* occurs in a tumor-specific manner and appears to be associated with more aggressive forms according to the proportion of *Ikaros* methylation in relation to the Duke’s stage, which occur in a coordinated manner with the neighboring genes VWC2 and *FIGNL*.

To the best of our knowledge, our study is the first report of genetic or epigenetic changes of an *Ikaros* family member outside of a hematologic malignancy, where *Ikaros* is expressed at very low levels. We were able to detect low but reproducible levels of expression of Ikaros in normal colon and unmethylated colorectal adenocarcinoma samples. Although reintroduction of Ikaros in HCT-116 moderately affects cell viability and growth, these experiments allowed us to identify a number of direct Ikaros targets, some of which are also deregulated in primary cases. The importance of the genes identified by ChIP-chip analysis as targets of Ikaros in the context of colorectal cancer becomes more evident when gene ontology analysis is carried out and in the light of existing published studies. Among the genes shown to feature binding to Ikaros, we found several notable markers, some of which had been previously referenced in the context of colorectal cancer. For instance, *PTPN6*, which, like Ikaros, is primarily expressed in hematopoietic cells, has been proposed to play either a negative or a positive role in regulating signal transduction pathways in lymphoma, leukemia, and other cancers, as it functions as an antagonist to the growth-promoting and oncogenic potentials of tyrosine kinase. Interestingly, PTPN6 is normally expressed or overexpressed in some nonlymphocytic cell lines such as prostate, ovarian, and breast cancer cell lines. The level of PTPN6 expression is also altered in some breast cancer cell lines with negative expression of estrogen receptor, and in some prostate and colorectal cancer cell lines (25). MEIS2 belongs to a group of homeobox cofactors for HOX-class homeobox proteins, which control growth and differentiation during embryogenesis and homeostasis, and has been implicated in various cancer types. Dereegulation of *GPx7* (27), a glutathione peroxidase, or *GRMZ*, gene related to metastasis 2, have also been seen with cancers including colorectal adenocarcinoma. Finally, NHLH1 belongs to a helix-loop-helix family of putative transcription factors that have been implicated in tumorigenesis.

Our investigation highlights how the chromosomal neighborhood, and perhaps a tissue-specific chromatin context, could influence the permissivity to become hypermethylated. In this case, this effect appears to be more relevant than other factors shared by the rest of the *Ikaros* family members. Although the occurrence of these hypermethylation changes might not necessarily be associated with functional changes, in the case of Ikaros, we find that its hypermethylation-associated erasure of expression in colorectal cancer appears to have functional consequences in the aberrant expression of a number of targets.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgment

The authors thank Drs. Miguel Angel Peinado, Dave Monk, and Maribel Parra for their helpful comments and the Spanish National Tumor Bank Network, especially Dr. Maria Jesus Artiga, for providing us with primary samples.

Grant Support

E. Ballestar is supported by P081346 grant from the Spanish Ministry of Science and Innovation (MICINN-ISICIII) and 2009SGR184 AGAUR grant (Catalan Government). B.M. Javierre is funded by a REIPI Predoctoral Fellowship from ISCIII, Spain.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 15, 2010; revised June 21, 2011; accepted June 28, 2011; published OnlineFirst July 7, 2011.
LRES and Ikaros in Cancer

References

Published OnlineFirst July 7, 2011; DOI: 10.1158/1541-7786.MCR-10-0515

www.aacrjournals.org Mol Cancer Res; 9(8) August 2011 1151

Downloaded from mcr.aacrjournals.org on June 20, 2017. © 2011 American Association for Cancer Research.
Correction: Long-range Epigenetic Silencing Associates with Deregulation of Ikaros Targets in Colorectal Cancer Cells

In this article (Mol Cancer Res 2011;9:1139–51), which was published in the August 2011 issue of *Molecular Cancer Research* (1), the formatting of Figures 1, 3, and 6 was incorrect. The correctly formatted figures are provided below.

Figure 1.
Figure 3.
Figure 6.
Reference

Published OnlineFirst September 20, 2011.
©2011 American Association for Cancer Research.
doi: 10.1158/1541-7786.MCR-11-0380
Long-Range Epigenetic Silencing Associates with Deregulation of Ikaros Targets in Colorectal Cancer Cells

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-10-0515

Supplementary Material
Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2011/08/09/1541-7786.MCR-10-0515.DC1

Cited articles
This article cites 28 articles, 9 of which you can access for free at:
http://mcr.aacrjournals.org/content/9/8/1139.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/9/8/1139.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.