Vinculin Activators Target Integrins from Within the Cell to Increase Melanoma Sensitivity to Chemotherapy

Elke S. Nelson¹, Andrew W. Folkmann¹, Michael D. Henry², and Kris A. DeMali¹

Abstract

Metastatic melanoma is an aggressive skin disease for which there are no effective therapies. Emerging evidence indicates that melanomas can be sensitized to chemotherapy by increasing integrin function. Current integrin therapies work by targeting the extracellular domain, resulting in complete gains or losses of integrin function that lead to mechanism-based toxicities. An attractive alternative approach is to target proteins, such as vinculin, that associate with the integrin cytoplasmic domains and regulate its ligand-binding properties. Here, we report that a novel reagent, denoted vinculin-activating peptide or VAP, increases integrin activity from within the cell, as measured by elevated (i) numbers of active integrins, (ii) adhesion of cells to extracellular matrix ligands, (iii) numbers of cell–matrix adhesions, and (iv) downstream signaling. These effects are dependent on both integrins and a key regulatory residue A50 in the vinculin head domain. We further show that VAP dramatically increases the sensitivity of melanomas to chemotherapy in clonal growth assays and in vivo mouse models of melanoma. Finally, we show that the increase in chemosensitivity results from increases in DNA damage–induced apoptosis in a p53-dependent manner. Collectively, these findings show that integrin function can be manipulated from within the cell and validate integrins as a new therapeutic target for the treatment of chemoresistant melanomas. Mol Cancer Res; 9(6); 712–23. ©2011 AACR.

Introduction

Melanoma is the deadliest and most aggressive form of skin cancer. While early melanoma can often be cured by surgical intervention, advanced melanoma is notoriously resistant to chemotherapy. Genetic, functional, and biochemical studies suggest that melanoma cells become resistant to chemotherapeutic drugs by reprogramming their proliferation and survival pathways. In recent years, proteins involved in the regulation and execution of melanoma apoptosis have been identified and provided insights into the molecular basis for melanoma resistance. The current challenge is now to identify targets that bypass these cell death defects and to devise strategies for manipulating their function.

One group of proteins that are dysfunctional in resistant melanomas is the integrins, cell surface receptors that mediate attachment of cells to the extracellular matrix on the outside of the cell and the actin cytoskeleton on the inside of the cell. In addition to physically tethering cells to the matrix, integrins send and receive molecular signals that regulate cell adhesion (reviewed in refs. 1, 2), cell survival, proliferation, and migration (3, 4). In some tumors, ligation of integrins to the extracellular matrix appears to regulate cell survival, as detachment rapidly induces apoptosis (5). In support of this notion, increases in the expression of β3 integrins in melanomas fuel resistance to chemotherapy (6, 7). Efforts based on this line of thinking have led to the development of a number of β3 integrin antagonists (8–10). However, some of these reagents prevent binding of integrins to extracellular matrix ligands with an RGD motif; thus, they are not necessarily specific for β3 integrins. Moreover, although these reagents are thought to have antagonist properties, depending on the concentration employed they may instead agonize integrin function (11–13). Although there has been some success in preventing tumor angiogenesis by employing such targets, these promising anticancer drugs have failed in the clinic. Thus, alternative mechanisms for targeting integrin function are needed.

Several studies have unexpectedly showed that adherent cells are more sensitive than suspended cells to DNA-damaging agents (14–16). These findings suggest that, in addition to expressing higher levels of β3, resistant melanomas have a defective integrin pathway. In support of this...
Vinculin Activators Enhance Melanoma Chemosensitivity

notion, melanomas treated with chemotherapeutics often persist when they have little contact to the extracellular matrix but rapidly succumb to chemotherapy when extracellular agonists are applied to them (16). Hence, reagents that rescue defective integrin function are expected to improve treatment for melanoma resistance.

Some integrin-associated proteins (Rap1a, talin, and paxillin) have perceived therapeutic potential (reviewed in ref. 17). However, mechanisms whereby they can be targeted to tumors have yet to be established, and the potential efficacy of targeting has thus not been explored. Vinculin is an actin-binding protein that is recruited to the integrin cytoskeletal tail via its interaction with talin (18, 19), and numerous pieces of evidence suggest that vinculin is a critical regulator of integrin-mediated adhesion and migration. For example, cells devoid of vinculin have fewer and smaller adhesions and close a wound more rapidly than vinculin-positive cells (20–23). Furthermore, recent work has shown that vinculin regulates the clustering, turnover, and ligand-binding properties of integrin-containing complexes (23, 24).

The regulation of integrin-mediated events by vinculin depends on relief of an intramolecular interaction between the vinculin head and tail domains (24–26) and several proteins known to disrupt this interaction have been identified. At sites of Shigella entry into the intestinal epithelium, the invasion protein IpaA binds and unfurls vinculin (27). We and others previously showed that IpaA has 2 functional domains: an N-terminal domain that induces the cytoskeletal rearrangements required for bacterial entry and a noninvasive C-terminal motif that binds and activates vinculin (28–30). As a consequence of its role in unfurling conformation of vinculin, the C-terminal motif has been named vinculin activating peptide or VAP. The unique properties of VAP suggest that it has potential as a tool to activate vinculin and enhance integrin function. In this study, we have tested the efficacy of VAP in increasing integrin function from within the cell and sensitizing melanomas to chemotherapy and have further investigated the mechanism for its effects.

Materials and Methods

Cell lines

HeLa and Vin−/− mouse embryonic fibroblasts (MEF) were obtained and maintained as previously described (31). M21 melanoma cells were the generous gift of Paul Sondel and were maintained in RPMI + 10% FBS + 1% penicillin/streptomycin. They are a subclone that was derived in the laboratory of Dr. Ralph Reisfeld (Scripps, La Jolla, CA) from the human melanoma line UCLA-SO-M21, which was originally provided by Dr. D. L. Morton (UCLA, Los Angeles, CA).

Constructs

Fusion proteins containing green fluorescent protein (GFP) and fragments of IpaA were constructed by PCR amplification of the cDNA of interest from pEC15 (32), followed by subcloning into pLEGFP-C1 (Clontech Laboratories) or pEGFP-C1 (Clontech Laboratories). Briefly, VAP (IpaA residues: 500–633) was PCR amplified using the primers GGAATCCGGAAGACAGACAGAGTTACAG and GAATTCCTATCTTATAGTAATTTTATGATAGG; the resulting PCR products were cloned into the BglII-EcoRI sites of pEGFP-C1. For cloning into pLEGFP-C1, VAP was PCR amplified using the primers AACACTCGAGAAGACCATTAATCAGAAGACAGAG and GGGGTACCGTGTGGTTTCTGTTACGAGTTTCTTATATATTG. VAP constructs were cloned into the XhoI–BamHI–digested vector. Two different mutant forms of VAP lacking the vinculin-binding sites were also generated (ΔVBS1 and ΔVBS2). ΔVBS1 consists of IpaA residues 510 to 556 and was created using the following primers: AACACTCGAGAAGACCATTAATCAGAAGACAGAG and GGGGTACCGTGTGGTTTCTGTTACGAGTTTCTTATATATTG. ΔVBS2 contains residues 590 to 611 of IpaA and was generated using the primers TCGAGAAGAATTCTTACAGATGATATATCATGAATTTAAAAATACAAATGTATTACGTTAACAGACATCAATGATATATCATGAATTTCTTATATATTGC. ΔVBS constructs were cloned into the XhoI and BamHI sites of pLEGFP-C1 as described for VAP. ΔVBS1 was employed in melanoma studies examining localization, adhesion, and clonal growth. ΔVBS2 was utilized in melanoma apoptosis experiments. Full-length vinculin in pCMV-myc has been previously described (31). GFP–vinculin was the generous gift of Ken Yamada (NIH, Bethesda, MD) and has previously been described (33). The A50I substitutions were generated by site-specific mutagenesis according to the Quickchange Manual (Stratagene), using GFP–vinculin as a template and the following primers: CCCGTGTGCCGGCTGACGCCATTGTCGCCGAACCTGGTGCCGG and CCGACCCAGTTTGTCTGACATGACATTGCCGTCAACGGCCGACGGG.

Infections and transfections

Stable cell lines were generated as previously described (34) and selected in 0.5 mg/mL (HeLa) or 1.0 mg/mL (M21) G418. Transient transfections were carried out as previously described (28, 31). M21 cells stably expressing GFP–VAP were sorted using a Becton Dickinson FACS DiVa Flow Cytometer to identify clones expressing high levels of the fusion protein.

Focal adhesion kinase phosphorylation assays

For the analysis of focal adhesion kinase (FAK) phosphorylation, HeLa cells expressing GFP or VAP were suspended in serum-free medium for 1 hour and then plated on fibronectin-coated dishes (10 μg/mL) for 0 to 4 hours. Cells were washed and lysed as previously described (34). To immunoprecipitate FAK, cell lysates were incubated with a polyclonal antibody against FAK (the generous gift of Keith Burridge, University of North Carolina). The immune complexes were recovered using Protein A

www.aacjrournals.org
Mol Cancer Res; 9(6) June 2011

713

Downloaded from mcr.aacrjournals.org on June 27, 2017. © 2011 American Association for Cancer Research.
Sepharose (Sigma), washed 4× with lysis buffer (34), and subjected to SDS-PAGE and Western blot analysis. The immune complexes were blotted with an anti-phosphoryrosine antibody (BD Biosciences), after which the blot was stripped and then reprobed with the polyclonal FAK antibody. The level of FAK phosphorylation for 3 independent experiments was determined using densitometry and ImageJ software.

Immunoprecipitation of GFP fusion proteins

These experiments were carried out in the same manner as the FAK immunoprecipitation experiments. A monoclonal anti-GFP antibody (Roche) was used for the immunoprecipitation, and the immune complexes were recovered using Protein G Agarose (Sigma). The resulting immunoprecipitates were blotted with antibodies against vinculin (hvin1) or GFP (Roche).

Immunofluorescence

Cells were fixed, permeabilized, and washed as previously described (31). To visualize vinculin, cells were blocked in 10% BSA (bovine serum albumin) in universal buffer (150 mmol/L NaCl, 50 mmol/L Tris-HCl, pH 7.6, 0.01% NaN₃), incubated with a mixture of hVIN-1 (Sigma) and 7F9 (Millipore) at a 1:200 dilution, washed, and incubated with an anti-mouse Texas Red–conjugated donkey anti-mouse IgG (H + L) at a 1:750 dilution (Jackson ImmunoResearch Laboratories, Inc.). Fluorescence images of MEFs were captured at room temperature with a confocal microscope (model LSM 510; Carl Zeiss MicroImaging, Inc.). A 63× oil objective (Carl Zeiss MicroImaging, Inc.) with a NA of 1.4 was used. Images were obtained using the LSM Image Browser (Carl Zeiss MicroImaging, Inc.). All other cells were visualized at room temperature using an Axiovert 200M inverted microscope (Carl Zeiss MicroImaging, Inc.) and 63× oil objective (Carl Zeiss MicroImaging, Inc.) with a NA of 0.55. Cells were photographed using an ORCA-ER-1394 cooled charge-coupled device camera (Hamamatsu Corporation), and images were acquired using AxioVision 4.7 software (Carl Zeiss MicroImaging, Inc.). Minor adjustments of brightness and contrast were applied to entire images using Adobe Photoshop CS3 or Microsoft PowerPoint.

Adhesion assays

Human fibronectin was purified from outdated human platelets as previously described (35), rat tail collagen I was purchased from BD Biosciences, and vitronectin was obtained from Invitrogen. For adhesion assays, cells were lifted, washed, and plated as previously described (31), with minor modification to the number of cells plated. For experiments using HeLa cells or M21 melanomas, cells were plated at a concentration of 50,000 cells per well. For MEF experiments, either 25,000 or 50,000 cells per well were plated, depending on the numbers of transfected cells obtained. HeLa cells were allowed to adhere for 15 minutes, MEFs for 30 minutes, and M21 cells for 2 hours, after which the surfaces were washed 2 times to remove nonadherent cells. The average number of adherent cells in 10 fields of view from at least 3 independent experiments was plotted as a function of the percentage of total cells. P values were determined using Graph Pad Instat Analysis software. For analysis of focal adhesion numbers and cell area, HeLa cells were plated onto fibronectin-coated dishes for 2 or 6 hours, and the cell area and number of focal adhesions in 20 cells was quantified. Cell area was measured using ImageJ software, and focal adhesions were counted using AxioVision 4.7 software. The results were averaged over 3 independent experiments.

Apoptosis assays

M21 cell lines that stably express GFP, GFP–VAP, or GFP–AVBS were left untreated or were treated with ara-C (1-ß-arabinofuranosylcytosine) for 48 hours in growth medium. To quantify apoptosis using Annexin V staining, cells were lifted, washed with PBS, and stained with APC (adenomatous polyposis coli)–Annexin V according to the manufacturer’s protocol (BD Pharmingen). The number of apoptotic cells was scored as described above. The percentage of apoptotic, Annexin V–positive cells before and after treatment is shown. Results are representative of at least 3 individual experiments, and error bars indicate the SD. To examine apoptosis by assessing caspase-9 cleavage, M21 cells expressing the indicated GFP fusion proteins were treated with 20 μmol/L ara-C or 5 or 20 μg/mL cisplatin (Sigma) for 48 hours. The cells were lysed in 2× sample buffer, the samples were separated by SDS-PAGE, and proteins were immunoblotted with antibodies against caspase-9 (Cell Signaling). This antibody is directed against human caspase-9 and recognizes both full-length and cleaved fragments of caspase-9.

Analysis of p53 levels

M21 cells expressing GFP or GFP–VAP were treated for 18 hours with 25 μmol/L ara-C. Lysates were harvested and separated as described for the apoptosis assays. p53 levels were examined using a mouse monoclonal antibody against human p53 (Sigma; clone BP53-12). Actin levels were examined using a pan-actin mouse monoclonal antibody (clone c4; Millipore). The levels of p53 and actin were quantified as described above for the analysis of FAK levels. Inhibition of p53 expression was accomplished using lentivirus encoding short hairpin RNA (shRNA) against human p53 (Santa Cruz Biotechnology).

Colon-forming assays

Melanoma cells were treated with various concentrations of the chemotherapeutic drug ara-C or dacarbazine (DTIC) in RPMI + 0.5% FBS at 37°C and 10% CO₂. Cells were treated with ara-C for 24 hours, after which 1 × 10⁵ cells were plated in growth medium, maintained for 10 days, and then fixed with 3.7% formaldehyde in PBS and stained with crystal violet. Images of each plate were obtained using a Kodak EDAS 290 camera. Each condition was tested in triplicate and clonal growth was quantified by densitometry using ImageJ software. For DTIC experiments, 5 × 10⁵
cells were treated for 48 hours, with fresh drug added every 24 hours. Following treatment, cells were maintained for 5 days in fresh growth medium, fixed, and stained with crystal violet. Each plate was scanned using a Canon 5600F scanner.

Mouse tumor growth

All procedures involving animals were performed in accordance to The University of Iowa Animal Care and Use Committee policies. Severe combined immunodeficient/beige mice (Charles River Laboratories) were injected subcutaneously with 100,000 M21 cells expressing either GFP or GFP–VAP suspended in cold PBS. Seven to 8 mice were used for each condition. Mice were anesthetized with isoflurane, and injection sites were prepared with alcohol pads before injection. Starting at week 4 when tumors were becoming visible, mice were injected intraperitoneally with ara-C at 100 mg/kg. A second ara-C injection was carried out at week 5. Tumors were measured weekly and tumor volume was calculated using the formula: (length × width²)/2 where length was the longest dimension and width was the dimension perpendicular to length. When the tumor length exceeded 1.5 cm in any dimension, a tumor volume of 1,721 cm² was recorded, and mice were euthanized via CO₂ gas asphyxiation and cervical dislocation.

Results

The impetus of this work was to identify mechanisms for increasing integrin ligation to the extracellular matrix from within the cell and determine whether they are effective in sensitizing melanomas to chemotherapy. Vinculin is recruited to the integrin cytoplasmic tail where it regulates integrin clustering, turnover, and ligand-binding properties (23, 24). These characteristics led us to investigate if integrin function can be modulated by promoting activating conformational changes in vinculin. To address this possibility, we employed VAP, a short peptide derived from the C-terminus of the Shigella invasion protein, IpaA, that activates vinculin by promoting conformational changes (28–30).

VAP increases integrin-mediated cell adhesion and signaling

We first examined the effects of VAP on integrin function. For this initial study, we used HeLa cells which have well-characterized integrin profiles and responses. We allowed cells expressing GFP or a fusion of GFP and VAP to adhere to dishes coated with a wide range of fibronectin concentrations. More VAP expressing cells than control cells adhered; quantification revealed that the increase was maximal at 10 μg/mL fibronectin, with 97% ± 7% of the VAP-expressing cells adhering compared with only 46% ± 2% of control cells (Fig. 1A). To determine whether the effect of VAP on cell adhesion required integrins, we preincubated the cells with 6S6, a function-blocking antibody against β1 integrins. We found that adhesion of both the control and VAP-treated cells was blocked to a similar extent (Fig. 1A), suggesting that integrin function is required for VAP to achieve its adhesional effect. We next examined whether the effect of VAP on cell adhesion is limited to fibronectin by plating cells on different extracellular matrices. In the case of collagen, we found that 70% ± 5% of VAP-expressing cells versus only 29% ± 3% of the GFP-expressing cells, adhered to coated surfaces (Fig. 1B). We obtained similar, though somewhat less dramatic, results for vitronectin (Fig. 1B).

To determine whether the increase in adhesion affected cell spreading and/or the number of focal adhesions, we examined the cells by immunofluorescence microscopy. As anticipated, VAP largely colocalized with vinculin at focal adhesion sites (Fig. 1C). Although the VAP-expressing cells consistently appeared to be more spread, an analysis of the average cell area revealed that these differences were statistically insignificant (Supplementary Fig. S1A). It also seemed that there were more focal adhesions in VAP-expressing cells than in the control cells, and in many instances, the change appeared to be the consequence of an increase in the number of adhesion complexes on the cell interior (Fig. 1C). To confirm these observations, we carefully counted the number of cell–matrix adhesions. Focal adhesions that were located on, or contacted, the cell border were scored as peripheral focal adhesions, whereas focal adhesions that did not contact the cell periphery were recorded as interior focal adhesions. Table 1 reveals that there was a significant increase in the number of focal adhesions in VAP-expressing cells that had been plated on fibronectin for 2 hours. This effect was attributed to an increase in the number of more centrally located focal adhesions following exposure to VAP, as the number of peripheral adhesions remained unchanged in this context (Table 1). Similar results for focal adhesion numbers were obtained at 6 hours after plating on fibronectin (Supplementary Fig. S1B).

As an independent measure of integrin function, we assessed whether VAP could increase the tyrosine phosphorylation of FAK, a potent downstream mediator of integrin signaling. In good agreement with findings from previous studies (36), there was an initial burst of FAK tyrosine phosphorylation followed by a more modest increase that was prolonged for at least the first 4 hours of plating after plating cells on fibronectin (Fig. 1D). In cells expressing GFP–VAP, FAK phosphorylation was increased to a similar extent initially but remained elevated to a greater extent and for a longer period of time than in cells expressing GFP only. Collectively, these results suggest that the VAP-mediated increases in integrin activation manifest itself in the form of more adhesions and elevated intracellular signaling.

VAP enhances the sensitivity of melanoma cells to chemotherapy

Adherent melanoma cells are more sensitive than suspended cells to chemotherapy (15, 16). This observation, together with our finding that VAP enhances integrin function, led us to explore whether VAP can modulate the sensitivity of M21 melanomas to chemotherapy. To this end, we generated M21 human melanoma cell lines stably expressing GFP, GFP–VAP, or a GFP fusion with a
nonbinding version of VAP that lacks its vinculin binding sites (ΔVBS). In melanoma cells, GFP–VAP, but not the control proteins, bound to (Supplementary Fig. S2A) and colocalized with vinculin at focal adhesions (Fig. 2A). Furthermore, GFP–VAP increased adhesion of these cells to both fibronectin (Fig. 2B) in a dose-dependent manner and also to collagen and vitronectin (Fig. 2C). Cells expressing the control ΔVBS protein produced no significant increases in adhesion over the GFP-expressing cells (Supplementary Fig. S2B).

To examine whether vinculin activation by VAP affects integrin ligation to the extracellular matrix, we measured the amount of active integrin on melanoma cells expressing VAP. To this end, we assessed the percentage of M21 cells stably expressing GFP or a fusion of GFP and VAP that stained positive for active β1 integrins on the cell surface using antibodies that recognize the active conformation. In the presence of VAP there was a 15% ± 4% increase in

| Table 1. Average number of focal adhesions ± SEM from 3 independent experiments |
|---------------------------------|-----------------|------------------|
| | GFP 2 h | VAP 2 h | P |
| Peripheral FAs | 120 ± 5 | 118 ± 7 | N.S. |
| Interior FAs | 73 ± 8 | 163 ± 7 | <0.0001 |
| Total FAs | 193 ± 10 | 281 ± 9 | <0.0001 |

Abbreviation: N.S., not significant.
cells expressing active integrin over control GFP-expressing cells (Fig. 2D) despite having similar levels of total β1 integrin on the cell surface (Fig. 2E). Given that GFP–VAP was expressed at very low levels relative to GFP alone (data not shown), it is possible that the magnitude of the effect is even greater than evident in Figure 2D.

We wanted to ensure that the effects of GFP–VAP on the M21 melanomas were not limited to this cell type or represented an artifact of expression. To address these issues, we delivered VAP to a distinct melanoma cell line by fusing it to the basic domain (residues 47–57) of the HIV transcription factor TAT, as this peptide confers the ability to traverse cell membranes. Administration of TAT-VAP to M21 or A375 melanomas led to 2.0- and 2.3-fold increases in adhesion, respectively, over that observed in cells treated with TAT alone (Fig. 2F). These findings suggest that VAP increases integrin function independent of the melanoma cell line employed and independent of its mode of delivery.

Figure 2. VAP increases integrin function in melanoma cell lines independent of its mode of delivery. A, VAP localizes to focal adhesions in melanoma cells. M21 cells expressing the indicated fusion protein were fixed, permeabilized, stained with Texas Red–conjugated antibodies against vinculin and analyzed by immunofluorescence microscopy. Bottom images show a 7× magnification of the boxed region depicted in the corresponding image above. White arrows indicate interior focal adhesions. Top bar = 20 μm; bottom bar = 3 μm. B and C, VAP increases melanoma adhesion. M21 cells expressing the indicated proteins were incubated in wells coated with fibronectin (B), 1 μg/mL rat tail collagen (C), or 2.5 μg/mL vitronectin (C). The wells were washed gently and the percentage of cells that adhered was quantified and analyzed as described in the legend of Figure 1. *, P < 0.001 and #, P < 0.05. D and E, VAP increases the number of active integrins but not total integrin levels. Subconfluent cultures of cells were lifted from tissue culture surfaces. The cells were stained with 12G10 (D, active integrin) or TS216 (E, total integrin) followed by a Texas Red–conjugated secondary antibody. Positive cells were scored using flow cytometry, and the average number of positive cells was expressed ± SD. The means from 3 independent experiments were analyzed using a Student’s t test. F, VAP increases melanoma cell adhesion independent of cell line employed or mode of delivery. M21 or A375 melanomas were treated with TAT or a fusion of TAT and VAP (TAT-VAP), lifted, and examined for their ability to adhere to dishes coated with fibronectin as described in the legend of Figure 1. The numbers of adherent cells from 10 representative fields of view from 3 independent experiments were counted and expressed as a percentage of total cells ± SEM.
To assess whether VAP-mediated elevations in integrin function increase the sensitivity of M21 melanomas to chemotherapy, we conducted colony-forming assays to examine sensitivity of the M21 cells to the chemotherapeutic drug ara-C. For these experiments, M21 cells were exposed to varying doses of ara-C for 24 hours, replated at low density in growth medium, and scored for subsequent clonogenic growth. Cells expressing either GFP or GFP–ΔVBS were largely resistant to chemotherapy, exhibiting only partial decreases in clonogenicity even at high doses (Fig. 3A). In contrast, GFP–VAP-expressing melanoma cells formed very few colonies at drug concentrations near the IC_{50} for ara-C (Fig. 3A; ref. 37). This effect was not limited to cells treated with ara-C as similar effects were observed when the M21 cells were treated with dacarbazine, an FDA (Food and Drug Administration)-approved chemotherapeutic for the treatment of metastatic melanoma (Supplementary Fig. S3).

To test whether stimulating integrin function can enhance the response to chemotherapy in vivo, we examined the effects of GFP–VAP on melanoma responses to chemotherapy in a M21 mouse model. Mice bearing subcutaneous tumors expressing GFP or GFP–VAP were left untreated or received 2 treatments (low dose) of ara-C of approximately 1 week apart and were monitored for tumor size. We found that control mice injected with GFP-expressing melanoma cells developed tumors with a speed consistent with that reported for the melanoma cells previously (16) and that administration of ara-C alone had no significant effect on tumor growth (Fig. 3B). In the mice injected with VAP-expressing melanoma cells, the onset of tumor formation and tumor size were greatly reduced relative to the same parameters in the control mice. Moreover, treatment of these mice with ara-C resulted in a significant decrease in tumor size (P ≤ 0.05) once tumors began to develop (Fig. 3B).

VAP sensitizes melanomas to chemotherapy by stimulating apoptosis

The effects of VAP on tumor growth in vitro and in vivo motivated us to investigate the mechanism by which enhanced integrin function increases melanoma chemosensitivity. We first examined whether VAP-expressing cells are more susceptible to chemotherapy-induced apoptosis than their control counterparts. Using flow cytometry, we measured the number of cells that stained positive for the apoptosis marker APC–Annexin V. The percentage of apoptotic cells among ara-C–treated, VAP-expressing melanoma cells was over 2-fold higher than that among ara-C–treated control melanoma cells (expressing either GFP or the nonbinding ΔVBS mutant; Fig. 4A). As an independent measure of apoptosis, we examined the extent of caspase-9 cleavage. We consistently observed more cleaved caspase-9 in the VAP-expressing melanoma cells than in their GFP counterparts (Fig. 4B). Moreover, cisplatin, another DNA-damaging agent, also induced caspase-9 cleavage, and to a much greater extent than ara-C (Fig. 4C). Because VAP seemed to be having an antiproliferative effect in vivo, we also examined whether cell doubling was altered by VAP. However, we consistently found no differences in cell doubling (Fig. 4D).

Previous studies suggested that the melanoma cells most susceptible to apoptosis may have elevated levels of p53 (15). We thus tested whether p53 levels were elevated in M21 cells expressing GFP or VAP. In the control cells, p53 levels were barely detectable, and the addition of a DNA-damaging agent increased the levels as expected (Fig. 5A). In contrast, the GFP–VAP-expressing cells had a high basal level of p53. As in the control cells, DNA damage led to an increase in p53 levels (Fig. 5A). We determined whether
elevations in p53 are required for effects of VAP. For these studies, we inhibited p53 using small hairpin RNAs. When p53 levels were diminished using this approach (Fig. 5B), the control cells were still able to induce apoptosis to the same extent as the cells expressing wild-type levels of p53 (Fig. 5B). In contrast, apoptosis was reduced to basal levels in the VAP-treated cells. Hence, elevations in p53 expression are required for VAP to induce apoptosis. Collectively, these findings show that VAP enhances integrin function in M21 melanomas and this effect sensitizes them to DNA damage–induced apoptosis in a p53-dependent manner.

VAP enhances adhesion by binding to an amphiphatic α-helix in the vinculin head

To ensure that VAP acts by targeting vinculin, we explored its effects in cells lacking vinculin. We wished to carry out these experiments in melanoma cells lacking vinculin. However, only a small fraction of vinculin is required to maintain cell–matrix adhesion, and studies show that it cannot be depleted (using RNA interference) to an extent that affects cell–matrix adhesion (refs. 34, 38; S. Craig, personal communication). As an alternative approach, we examined effects of VAP in MEFs isolated from the vinculin null mouse. As anticipated, VAP did not coprecipitate (Fig. 6A) and exhibited diffuse cytoplasmic staining (Fig. 6B) in the absence of vinculin. When vinculin was reintroduced into these cells, it bound VAP (Fig. 6A) and largely limited localization of VAP to focal adhesions (Fig. 6B). The failure of VAP to localize to focal adhesions in the absence of vinculin supports the idea that vinculin is required for effects of VAP on cell adhesion. In agreement with this conclusion, the expression of GFP or VAP resulted in a similar level of cell adhesion to fibronectin-coated surfaces (Fig. 6C), and reexpression of vinculin increased vinculin.

Figure 4. VAP potentiates apoptosis in response to DNA damage. A, VAP increases the number of Annexin V–positive apoptotic cells. M21 cell lines stably expressing GFP, GFP–VAP (VAP), or a fusion of GFP and the nonbinding version of VAP (ΔVBS) were left untreated (control) or treated with 20 µmol/L ara-C. Cells were lifted off dishes, washed with PBS, and stained with APC–Annexin V, after which the number of positive cells was scored using flow cytometry. The percentage of Annexin V–positive cells before and after treatment is shown. Results are representative of at least 3 individual experiments and error bars indicate the SD. B and C, VAP increases caspase-9 cleavage. The same cell lines were treated with ara-C (B) as described above or with 0, 5, or 20 µg/mL cisplatin (C), lysed, and immunoblotted with antibodies against human caspase-9 or GFP. FL indicates full-length caspase-9. The white lines indicate regions where irrelevant lanes were removed from the blot. D, VAP has no effect on cell proliferation. Defined numbers of cells were plated at low density and harvested and counted daily for 5 days.
adhesion (Fig. 6C), as has been previously reported (22, 31). Importantly, expression of GFP–VAP in the vinculin-rescued cells resulted in a further increase in the number of adherent cells, with the magnitude of the increase slightly lower than that observed in the HeLa cells (Figs. 6C and 1A).

We next investigated which region of vinculin is required for the effects of VAP on cell adhesion. Vinculin ligands, like VAP, that interact with the head domain have the potential to bind to 2 sites within it: a hydrophobic site in the N-terminal α-helical bundle and a more C-terminal site (39). To investigate whether the N-terminal site is critical for VAP binding and enhanced adhesion, we used site-directed mutagenesis to generate a full-length vinculin harboring an A50I substitution. This mutant version of vinculin is well characterized with respect to its ability to localize to focal adhesions (24, 26, 40). To determine whether this substitution blocks VAP deposition at focal adhesions, and also binding to vinculin, we examined coimmunoprecipitation and colocalization of A50I vinculin and GFP–VAP in the vinculin-null MEFs. VAP did not readily bind to or colocalize with A50I vinculin (Fig. 6A and B). This effect was not due to differences in the amounts of the 2 vinculins (Supplementary Fig. S4). Furthermore, in the presence of A50I vinculin, VAP was not able to elicit an increase in cell adhesion (Fig. 6C). Taken together, these results indicate that VAP enhances integrin-mediated events by engaging vinculin at amino acid A50.

Discussion

The goal of this study was to uncover novel mechanisms that might enable effective targeting of integrin function as a therapeutic strategy for sensitizing melanomas to chemotherapy. Given that cytoplasmic integrin–associated proteins regulate the affinity of integrins for the extracellular matrix (reviewed in refs. 41–43), we explored whether an activator of vinculin can be employed for such manipulation. Our discovery that VAP increases both integrin-mediated adhesion and signal transduction together with the observation that this effect is dependent on the presence of both integrins and vinculin suggests that such an approach is feasible. Furthermore, we have tested whether molecules such as VAP might be useful for enhancing integrin function in melanoma. We found that VAP sensitizes melanoma cells to cancer chemotherapy both in vitro and in vivo and that it does so by increasing their susceptibility to DNA damage–induced apoptosis in a p53-dependent manner. Collectively, these findings suggest that molecules like VAP may have utility in sensitizing resistant melanomas to chemotherapy.
Notably, the level of VAP expressed in a particular cell line does not correlate strictly with the adhesion response it elicits. Despite the fact that all the cells examined express comparable levels of VAP, HeLa cells exhibit a 2-fold increase in adhesion to fibronectin, whereas M21 cells show only a 1.5-fold increase. This difference may be due, in part, to the fact that the melanoma cells have adhesion defects (44). Hence, it is likely that the effects of VAP on HeLa cell adhesion are greater because in that context VAP provides a boost to an adhesion mechanism that is already functioning. In contrast, when VAP is expressed in cells with adhesion defects, it can only partially enhance the abilities of a defective or dysregulated integrin. Nevertheless, the increase in integrin function in the M21 cells is sufficient to produce a dramatic increase in the sensitivity of these melanoma cells to the cancer chemotherapeutic ara-C.

Also, notable is our observation that although VAP alone inhibits melanoma growth in vivo, it does not do so in the in vitro clonogenic growth assays. We consistently observed this effect and believe that it may be a consequence of the fact that the clonogenic growth assays measure growth after 8 to 10 days, whereas growth in vivo is measured over a much longer time frame (i.e., 5–12 times longer). An additional possibility is that VAP has additional growth inhibitory effects in vivo. For example, VAP may inhibit interaction between the tumors and constituents of the stroma. Future work will focus on dissecting the underlying cause of the additional potency of VAP in vivo.

How might VAP elicit its effects on cell adhesion? Within the cell, vinculin exists in at least 3 pools: an inactive fraction in the cytoplasm, an active focal adhesion–bound fraction at the cell periphery, and an inactive focal adhesion–bound fraction in a gradient with the concentration increasing from the cell periphery to the cell interior (25). Whether VAP targets vinculin that is already associated with an adhesion complex or that is part of the nonassociated and inactive cytoplasmic pool is not yet known. At least 2 pieces of evidence argue against the latter possibility. First, all available evidence suggests that vinculin is recruited to a focal adhesion complex prior to its activation (25). Thus, our observation that VAP does not localize to adhesion sites in the absence of vinculin (Fig. 6) would suggest that VAP, by itself, cannot both recruit and activate vinculin. Secondly, if VAP were to target the inactive cytoplasmic vinculin fraction, we would expect to see intense cytoplasmic staining of GFP–VAP or vinculin. We have carefully examined our cells and find no evidence for such an increase. Hence, it seems more likely that this protein targets the pool of vinculin at a focal adhesion. Our observation that VAP induces an increase in the number

![Figure 6. VAP requires vinculin amino acid A50 for its effects on integrin-mediated events. A, coimmunoprecipitation of VAP with wild-type (WT) and mutant (A50I) vinculin. MEFs isolated from the vinculin-null mouse were cotransfected with GFP–VAP as well as Myc, a fusion of Myc and wild-type vinculin (Myc–Vin) or Myc and vinculin containing an alanine 50 to isoleucine substitution (Myc–A50I Vin). The cells were lysed and the GFP proteins were immunoprecipitated and analyzed by blotting using antibodies against vinculin or GFP. B, representative images of cells that were stained with antibodies against vinculin and examined by immunofluorescence microscopy. Bar = 20 μm. C, adhesion assays of Myc or Myc-Vin expressing cells were incubated on fibronectin (10 μg/mL) for 30 minutes and washed. The number of adherent cells in 3 independent experiments was quantified as described in the legend of Figure 1. *, P value < 0.001 and #, P value < 0.05.](image-url)
of more centrally located focal adhesions supports the notion that VAP targets the inactive, focal adhesion–bound pool of vinculin (Fig. 1). In this scenario, VAP could increase either the level or duration of vinculin activity. Our observation that VAP increases the duration of FAK tyrosine phosphorylation lends support to the notion that VAP increases the length of time for which vinculin is active. Depending on the conditions, such prolonged signaling could prevent the termination of adhesion signaling by inhibiting disassembly, remodeling, or sliding of the multiprotein complex.

While it remains to be established which pool of vinculin is targeted by VAP, our work provides information about the structural requirements for its effects. VAP binds vinculin, localizes to focal adhesions, and increases adhesion of cells that express the wild-type vinculin but not the A50I vinculin mutant (implying that occupation of VAP of the A50 site on vinculin is critical for increased adhesion). If VAP were to target vinculin at focal adhesions, then one might expect that the A50 site of vinculin is occupied by talin (the major head ligand in cell–matrix adhesions) and/or that talin competes for binding to this site. However, previous work showed that VAP cannot displace talin from vinculin (30). Indeed, talin has recently been reported to occupy another more C-terminally located site in the vinculin head and binding to this region is thought to lead to the recruitment of vinculin to focal adhesions (39). Thus, our data are indicative of a scenario in which talin recruits vinculin to adhesion sites via the more C-terminal site, and VAP activates vinculin by binding to the A50 site.

The observation that VAP increases integrin function suggests that VAP, or molecules like it, has potential as therapeutics for diseases caused by defects in integrin function. Melanomas are notoriously resistant to chemotherapy owing to their ability to survive detachment from the extracellular matrix (14, 16). Integrins are critical to this process, as M21 melanomas undergo apoptosis in response to chemotherapy when the cells are attached to an extracellular matrix but not when they are held in suspension. Further support for the notion that integrin-mediated substrate anchoring affects susceptibility to chemotherapy comes from the observation that agents mimicking interactions between integrins and the extracellular matrix increase the sensitivity of melanomas to such agents (16). Here, we show that VAP enhances integrin-mediated adhesion in M21 melanomas. Thus, targeting integrins from inside the cell has an effect that is similar to that of targeting them from the outside and that may represent a novel means of avoiding mechanism-based toxicities that develop from global and chronic interference with all integrins in the body.

Our findings raise the question of whether VAP itself is suitable for use in patients. Certainly, there is precedent for naturally occurring biological agents serving as potent pharmaceutical agents. For example, several snake venom toxins that inhibit integrin function by targeting the extracellular domain of the molecule are currently in use in the clinic to treat other diseases (reviewed in refs. 45, 46). One potential concern with using VAP itself is that it may promote Shigella infection in treated individuals. However, this seems extremely unlikely given that VAP would be targeted to a melanoma rather than to the gut and also because VAP lacks the IpaA N-terminus, which is required for bacterial entry into the host cell. Although immunogenicity could potentially limit the use of VAP in standard chemotherapy, the observation that VAP, when fused to the membrane-permeable peptide sequences from TAT, dramatically sensitizes melanomas to chemotherapy, suggests that this peptide may have therapeutic potential. In support of using a peptide in a therapeutic regimen, a broad spectrum of peptide drugs (either alone or as vectors for the delivery of ligands) has achieved clinical success. Alternatively, small molecule mimetics of VAP can be developed. More work is needed to establish whether VAP or small molecule mimetics of this peptide can be employed as adjuvants for melanoma chemotherapy. However, the work described here lays the foundation for the development of a new class of therapeutics that target integrin-associated proteins.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors thank Malabi Ventakersan for the pEC15 plasmid encoding IpaA, Ken Yamada for plasmid encoding GFP–vinculin, Eileen Adamson and Paul Sondel for generous gift of cell lines, and Keith Burridge for the polyclonal FAK antibody. They also thank Peter Rubenstein, Christopher Stipp, Xiao Peng, and Jessica Viner for their comments on the manuscript.

Grant Support

This work is supported by NIH grants 1K01CA111818 to K.A. DeMali, R01CA130916 to M.D. Henry, and the University of Iowa Interdisciplinary Training Grant in Molecular Biology NIH grant 5T32GM073610 to E.S. Nelson.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received January 1, 2011; revised March 8, 2011; accepted March 23, 2011; published OnlineFirst April 1, 2011.

References

Vinculin Activators Target Integrins from Within the Cell to Increase Melanoma Sensitivity to Chemotherapy

Mol Cancer Res 2011;9:712-723. Published OnlineFirst April 1, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-10-0599

Supplementary Material
Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2011/06/17/1541-7786.MCR-10-0599.DC1

Cited articles
This article cites 46 articles, 22 of which you can access for free at:
http://mcr.aacrjournals.org/content/9/6/712.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/9/6/712.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.