Angiogenesis, Metastasis, and the Cellular Microenvironment

IL-6 Promotes Head and Neck Tumor Metastasis by Inducing Epithelial–Mesenchymal Transition via the JAK-STAT3-SNAIL Signaling Pathway

Arti Yadav1, Bhavna Kumar1,2, Jharna Datta1, Theodoros N. Teknos1,2, and Pawan Kumar1,2

Abstract

Epithelial–mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell–cell junctions and cell polarity, resulting in the acquisition of migratory and invasive properties. However, the precise molecular events that initiate this complex EMT process in head and neck cancers are poorly understood. Increasing evidence suggests that tumor microenvironment plays an important role in promoting EMT in tumor cells. We have previously shown that head and neck tumors exhibit significantly higher Bcl-2 expression in tumor-associated endothelial cells and overexpression of Bcl-2 alone in tumor-associated endothelial cells was sufficient to enhance tumor metastasis of oral squamous cell carcinoma in a severe combined immunodeficient (SCID) mouse model. In this study, we show that endothelial cells expressing Bcl-2 (EC-Bcl-2), when cocultured with head and neck tumor cells (CAL27), significantly enhance EMT-related changes in tumor cells predominantly by the secretion of IL-6. Treatment with recombinant IL-6 or stable IL-6 overexpression in CAL27 cells or immortalized oral epithelial cells (IOE) significantly induced the expression of mesenchymal marker, vimentin, while repressing E-cadherin expression via the JAK/STAT3/Snail signaling pathway. These EMT-related changes were further associated with enhanced tumor and IOE cell scattering and motility. STAT3 knockdown significantly reversed IL-6–mediated tumor and IOE cell motility by inhibiting FAK activation. Furthermore, tumor cells overexpressing IL-6 showed marked increase in lymph node and lung metastasis in a SCID mouse xenograft model. Taken together, these results show a novel function for IL-6 in mediating EMT in head and neck tumor cells and increasing their metastatic potential. Mol Cancer Res; 9(12):1658–67. ©2011 AACR.

Introduction

Tumor metastases in head and neck cancer patients almost invariably heralds a poor prognosis with an average survival of 6 months and treatment of the patients is usually palliative (1). Five-year survival rates for patients with early stage localized head and neck cancers are more than 80% but drop to 40% when the disease has spread to the neck nodes, and to below 20% for patients with distant metastatic disease (2). Uncontrolled cell proliferation and angiogenesis are key characteristics of initiation and early growth of epithelial origin cancers (3). However, it is the subsequent acquisition of motility and invasiveness that leads to the metastatic dissemination of these tumor cells (4). Tumor metastasis is a complex process consisting of multiple individual steps (5). A key process in this metastatic cascade that converts an adherent epithelial cell into a migratory cell, which can invade through the extracellular matrix, is known as epithelial–mesenchymal transition (EMT; ref. 6). Many in vitro and in vivo studies have shown that tumor cells of epithelial origin can acquire mesenchymal phenotype (7, 8) and that these cells are typically seen at the invasive front of primary tumors (4, 9, 10). The role of EMT in tumor metastasis is further highlighted by the observations that acquisition of mesenchymal markers such as vimentin or S100A4 by epithelial cells is associated with increased metastatic potential (11, 12).

Functional loss of E-cadherin in epithelial cell has been considered a hallmark of EMT (13). During tumor progression, E-cadherin can be functionally inactivated or silenced by a number of different mechanisms including somatic mutations (14), downregulation of gene expression through promoter hypermethylation (15), histone deacetylation (16), or transcriptional repression (17). Several EMT-inducing regulators repress E-cadherin transcription via interaction with specific E-boxes of the proximal E-cadherin promoter (7). Most prominent E-cadherin regulators are the snail-related zinc-finger transcription factors (snail and slug; ...
IL-6 Promotes Tumor Cell Metastasis

Materials and Methods

Cell culture and reagents

Primary human dermal microvascular endothelial cells were purchased from Lonza. ECs were maintained in endothelial cell basal medium-2 (EBM-2) containing 5% FBS and growth supplements. Head and neck squamous carcinoma cell (HNSCC) line CAL27 (ATCC) was maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS. Immortalized (HPV E6/E7) oral epithelial cells (IOE) were provided by Drs. William Foulkes and Ala-Eddin Al Moustafa (McGill University, Montreal, Quebec, Canada; ref. 32) and cultured in keratinocyte serum-free medium (K-SFM, Invitrogen). Primary antibodies against E-Cadherin (Catalog no. 3195), Akt (Catalog no. 9272), pAkt (Catalog no. 9271), STAT3 (Catalog no. 9132), STAT3 (pY705; Catalog no. 9131), STAT3 (pS727; Catalog no. 9134), p44/42 MAPK (ERK1/2, Catalog no. 9102), pERK1/2 (Catalog no. 4377), FAK (Catalog no. 3285) and Tubulin (Catalog no. 2148) were purchased from Cell Signaling; Snail (Catalog no. AB70983), pFAK (Catalog no. ab4803), and Vimentin (Catalog no. ab20346) were from Abcam; pJAK1 (Catalog no. 44422G) and pJAK2 (Catalog no. 44426G) were from Invitrogen and IL-6 (Cat # AF-206-NA) was from R&D Systems. Recombinant IL-6, IL-8, and CXCL1/GRO-alpha proteins were purchased from PeproTech Inc.

Transduction of endothelial cells with Bcl-2 and CAL27 and IOE cells with IL-6

Bcl-2 was introduced into human microvascular endothelial cells as described previously (33). Interleukin-6 (IL-6) expression plasmid IL6-pTarget (Promega, Madison, WI; a kind gift from Dr. Tushar Patel, The Ohio State University) containing full-length IL-6 (34) was amplified using Vent polymerase (New England Biolabs). To generate retroviral expression vector containing IL-6, the cDNA for full-length IL-6 was amplified using the forward: 5’-cggagattCCAG-GAGCCCGCATG-3’ and the reverse: 5’-taggtccAAATCTGAGGTGCC ATG-3’ primers and the PCR product was sub cloned at the EcoRI/BamHI site of pLXSN product was sub cloned at the EcoRI/BamHI site of pLXSN vector (Clontech). We verified the authenticity of the expression vector by sequencing the plasmid DNA. IL-6 was introduced into CAL27 and IOE cells by using the same protocol as described above for Bcl-2 transduction.

Tumor and endothelial cell coculture

A total of 1×10^5 endothelial cells overexpressing Bcl-2 (EC-Bcl-2) or endothelial cells transduced with vector alone (EC-VC cells) were layered on top of collagen coated 6-well transwell inserts (3 μmol/L, Greiner Bio-One) and these transwell inserts containing endothelial cells were then carefully placed on top of 6-well plates containing tumor cells. After 72 hours of coculture, transwell inserts were removed and CAL27 cell lysate was prepared for Western blotting. In the inmunofluorescence staining experiments, CAL27 cells were cultured on top of cover slips in 6-well plates while the rest of the protocol was same as described above. For IL-6 neutralizing experiments, CAL27 cells were cocultured with EC-Bcl-2 in presence of neutralizing anti-IL-6 antibody (50 ng/mL) or isotype control antibody.

ELISA

Endothelial cells, CAL27 or IOE cells were cultured in 6-well plates till they were 80% confluent. Cells were washed and fresh media was added. After 24 hours, culture supernatants were collected from 3 separate experiments and cell number in each well was counted. Chemokines levels (IL-8, IL-6, and CXCL1/GRO-α) in culture supernatants were measured using Quantikine human ELISA kits (R&D Systems).
Lower chamber and 50 surface facing down) was then carefully assembled on top of added to the lower chambers. The upper chamber (sensor manufacturer’s instructions. In brief, 160 using the RTCA DP instrument (Roche) as per manufacturer’s instructions. Seventy-two hours posttransfection, cells were either used for migration experiments or whole cell lysates were prepared for Western blotting.

Western blot analysis

Whole cell lysates were separated by 4% to 12% NuPAGE Bis-Tris gels (Invitrogen) and transferred onto polyvinylidene difluoride (GE Healthcare) membranes. Nonspecific binding was blocked by incubating the blots with 3% bovine serum albumin (BSA) in Tris buffered saline containing 0.1% Tween-20 (TBST) for 1 hour at room temperature (RT). The blots were then incubated with primary antibody in TBST + 3% BSA at 4°C overnight. After washing with TBST, the blots were incubated with horseradish peroxidase-conjugated sheep anti-mouse IgG (1:10,000) or with donkey anti-rabbit IgG (1:10,000) for 1 hour at RT. An ECL-plus detection system (Amersham Life Sciences) was used to detect specific protein bands. Protein loading in all the experiments was normalized by stripping the blots and then reprobing with anti-tubulin antibody. Alpha Innotech imaging software was used to quantify Western blot bands.

Immunofluorescent staining

Endothelial cells, CAL27 cells or IOE cells were cultured in labtech chambers. CAL27 and IOE cells were treated with recombinant IL-6 (50 ng/mL) for different time points. At the end of incubation, cells were fixed with 4% paraformaldehyde for 15 minutes at RT and permeabilized by treating with 100% methanol for 10 minutes at −20°C. Next, slides were washed with PBS, blocked with normal goat IgG for 1 hour at room temperature and incubated overnight at 4°C with rabbit anti-E-cadherin and mouse anti-vimentin antibodies. After washing with PBS, slides were incubated with secondary antibodies (goat anti-mouse-IgG-Alexa Fluor 488 and goat anti-rabbit-IgG-Alexa Fluor 594). Slides were then mounted with Prolong gold antifade reagent with DAPI (Invitrogen). The fluorescent images were captured using Nikon Eclipse 80i microscope with DS-R1i camera at 400 magnification and overlaid using NIS-Elements-Basic Research software (Nikon). Lymph nodes were stained with mouse anti-pan cytokeratin antibody (ab7753, Abcam).

Statistical analysis

Data from all the experiments are expressed as mean ± SEM. Statistical differences were determined by 2-way ANOVA and Student t test. A P value of < 0.05 was considered significant.

Results

Bcl-2–expressing endothelial cells (EC-Bcl-2) promote EMT changes via the secretion of IL-6

We have previously shown that Bcl-2 expression is significantly elevated in tumor-associated blood vessels of head and neck cancer patients as compared with matched control samples (27). Recently, we showed that upregulation of Bcl-2 in tumor-associated endothelial cells is sufficient to enhance tumor metastasis, in vivo (25). However, the molecular mechanism by which EC-Bcl-2 promotes tumor metastasis is poorly understood. In this study, we examined if secreted factors from EC-Bcl-2 could induce EMT-related changes in head and neck tumor cells. Indeed, coculture of
EC-Bcl-2 along with tumor cells (CAL27) markedly enhanced vimentin expression (76% increase) while significantly decreasing E-cadherin expression (52% decrease) in CAL27 cells (Fig. 1A and B). In addition, coculture of EC-Bcl-2 with CAL27 also upregulated Snaill expression, a key repressor of E-cadherin (Fig. 1B). We next examined the chemokine profile of EC-Bcl-2 cells. Culture supernatants from EC-Bcl-2 cells contained significantly higher levels of IL-8, IL-6, and Gro-α as compared with endothelial cells transduced with vector alone (EC-VC; Fig. 1C). To further examine the role of these chemokines in EMT process, CAL27 cells were treated with recombinant IL-8, IL-6, or Gro-α for 3 days and E-cadherin and vimentin levels were analyzed by Western blotting. Interestingly, only IL-6 was able to significantly induce the expression of vimentin (63%) while repressing E-cadherin expression in CAL27 (51%; Fig. 1D). Similarly, coculture of CAL27 cells and EC-Bcl-2 in the presence of neutralizing IL-6 antibody significantly reversed IL-6-mediated EMT changes (Fig. 1E and F).

IL-6 promotes EMT changes in head and neck squamous cells and immortalized oral epithelial cells

To further examine the role of IL-6 in mediating EMT changes in HNSCCs, we cultured CAL27 cells for 3 days in the presence or absence of IL-6. IL-6 treatment of CAL27 cells markedly increased vimentin expression (62%) while at the same time decreasing the expression of E-cadherin (61%; Fig. 2A and B). IL-6 treatment also significantly increased snail expression (51%, Fig. 2B). Similarly, IL-6 treatment of IOE cells significantly upregulated the expression of vimentin (95%) and snail (64%) while reducing the E-cadherin expression (Fig 2C and D). Next, we examined the IL-6–mediated signaling cascade in CAL27 cells by treating these cells with IL-6 for different time points (0–240 min). IL-6 predominantly activated JAK/STAT3, MAPK, and PI3K/Akt signaling pathways. JAK1/2 activation peaked 10 minutes post IL-6 treatment, whereas STAT3 (pY705 and pS727), ERK1/2 and AKT activation peaked 30 minutes post IL-6 treatment (Fig. 2E).

IL-6 overexpression in head and neck squamous cells and immortalized oral epithelial cells induces EMT changes and enhances tumor cell scattering and motility

To further understand the role of IL-6 in the EMT process, we stably overexpressed IL-6 in CAL27 cells (CAL27-IL-6) and IOE cells (IOE-IL-6) using a retroviral vector. IL-6 expression levels in CAL27 and IOE cells were produced more than 8 fold IL-6 as compared with CAL27 cells transduced by vector alone (CAL27-VC; Supplementary...
significantly higher vimentin (54%) and snail expression (51%) whereas E-cadherin expression was significantly reduced (53%, Fig. 3B). Furthermore, IL-6 overexpression in CAL27 cells significantly enhanced tumor cell migration (Fig. 3C).

IOE cells produced very low baseline levels of IL-6 and overexpression of IL-6 markedly increased IL-6 production (>30-fold) as compared with IOE-VC (Supplementary Fig. S2A). Similar to CAL27, IL-6 overexpression induced scattering effect in IOE cells (Fig. 3D-a) and significantly increased vimentin (63%) and snail expression (70%) while downregulating E-cadherin levels (77%, Fig. 3E). In addition, IL-6 overexpression significantly enhanced IOE cell motility (Fig. 3F).

IL-6 mediates EMT via the activation of JAK-STAT3-snail pathway

Our signaling experiments showed that IL-6 activates 3 distinct signaling pathways: JAK/STAT3, MAPK, and PI3K/Akt (Fig. 2E). To examine which of these pathways is used by IL-6 to mediate its EMT-related effects, we knocked down Akt, STAT3, and ERK1/2 in CAL27 and IOE cells by siRNA treatment. Downregulation of Akt, STAT3, and ERK1/2 protein levels were verified by Western blotting (Fig. 4A and B). Knocking down of STAT3 in CAL27-IL-6 (Fig. 4A and C) and IOE-IL-6 cells (Fig. 4B and D) significantly reversed IL-6–mediated upregulation of vimentin (52% and 48% in CAL27-IL-6 and IOE-IL-6, respectively) and snail protein levels (58% and 64%), whereas Akt and ERK knockdown did not significantly alter vimentin and snail levels. Similarly, STAT3 knockdown significantly reversed IL-6–mediated loss of E-cadherin expression (67% and 45%), while Akt knockdown had no effect and ERK knockdown had only partial effect on E-cadherin expression (Fig. 4).

STAT3 knockdown significantly reverses IL-6–mediated CAL27 and IOE motility by inhibiting FAK activation

We further examined the role of different signaling pathways in IL-6–mediated tumor cell and IOE cell migration. As observed with EMT changes, knocking down of STAT3 significantly decreased CAL27-IL-6 and IOE-IL-6 cell migration (Fig. 5A and C). Knocking down of ERK had partial effect while Akt knockdown had the least effect on CAL27 and IOE cell migration (Fig. 5A and C). To further understand how STAT3 knockdown may be inhibiting CAL27 and IOE motility, we examined the activation profile of focal adhesion kinase (FAK), a key player in cell migration. Interestingly, STAT3 knockdown in CAL27-IL-6 and IOE-IL-6 cells markedly reduced FAK phosphorylation whereas Akt and ERK knockdown had no effect on FAK activation (Fig. 5B and D).

IL-6 promotes tumor growth, EMT, and tumor metastasis in vivo

To further investigate the role of IL-6 in EMT process and tumor metastasis, we used a SCID mouse xenograft model. CAL27-IL-6 tumors showed a moderate but
A significant increase in tumor growth as compared with CAL27-VC cells (Fig. 6A). CAL27-IL-6 tumor cells exhibited fibroblastic morphology (spindle shape) in contrast to cobblestone morphology of CAL27-VC cells (Fig. 6B). In addition, CAL27-IL-6 tumors showed markedly elevated levels of activated STAT3 (pY705, Fig. 6C) and snail proteins (Fig. 6D) that were predominantly localized in the nucleus. CAL27-IL-6 tumors also showed decreased E-cadherin and increased vimentin expression (Fig. 6E and F).

Lymph nodes from animals carrying CAL27-VC tumors were negative for metastatic disease whereas 60% of lymph nodes from animals carrying CAL27-IL-6 tumors were positive for metastatic disease (Fig. 7A–C). Similarly, lungs from animals with CAL27-IL-6 tumors showed marked increase in metastatic nodes (Fig. 7D and E).

Discussion

EMT is an important biological process that plays a critical role in tumor cell metastasis and is commonly observed in tumor samples from head and neck cancer patients (37, 38). However, the precise molecular events that initiate this complex process of EMT in head and neck cancers are poorly understood. There is increasing evidence that suggests a dynamic interaction between cancer cells and the host microenvironment to support tumor growth and spread (39). Stromal fibroblasts represent a major component of tumor microenvironment and soluble factors from mammary carcinoma-associated fibroblasts were shown to induce an EMT phenotype in PMC42-LA human breast carcinoma cells (40). We have previously shown that head and neck tumors exhibit significantly higher levels of Bcl-2 expression in tumor
associated endothelial cells (27) and overexpression of Bcl-2 alone in tumor-associated endothelial cells was sufficient to enhance tumor metastasis of oral squamous cell carcinoma in a SCID mouse model (25).

In this study, we show that endothelial cells expressing Bcl-2 (EC-Bcl-2), when cocultured with head and neck tumor cells, significantly enhance EMT-related changes in tumor cells. In addition, EC-Bcl-2 cells produced significantly higher levels of IL-8, IL-6, and Gro-α chemokines. Out of these different chemokines, only IL-6 was able to induce EMT-related changes in head and neck cancer cells. Crosstalk between endothelial cells and tumor cells via chemokines has been shown to promote transendothelial migration of cancer cells (41). Such observations reveal how cancer cells might utilize the chemokinetic network to modulate host microenvironment for their own progression. It is possible that multiple cytokines/chemokines may interact in a synergistic way to facilitate tumor cell release. In an elegant study, Lederle and colleagues, showed that IL-6 induces a complex reciprocally regulated cytokine network in tumor cells which leads to the development of malignant and invasive tumors in a human skin carcinoma model (29).

Interestingly, we also have previously observed that multiple NF-κB related serum cytokines (IL-6, IL-8, VEGF, HGF, and Gro-α) are strongly associated with poor prognosis in HNSCC patients (42). Out of these cytokines/chemokines, IL-6 was an independent predictor of tumor recurrence, poor survival and tumor metastasis (30, 31). In addition to IL-6, HGF has also been shown to regulate cell scattering and tumor metastasis in HNSCC (43).

Figure 4. IL-6 mediates EMT changes via the JAK/STAT3 signaling pathway. Akt, STAT3, or ERK1/2 proteins were knocked down in CAL-IL-6 and IOE-IL-6 cells by respective siRNAs. A and B, expression level of different proteins (Akt, STAT3, ERK1/2, E-cadherin, vimentin, and snail) was examined in CAL-IL-6 (A) or IOE-IL-6 (B) cells by Western blotting. Equal protein loading was verified by stripping the blots and reprobing with tubulin antibody. Band density of each protein was normalized with tubulin and expressed as % increase or decrease ± SE as compared with controls. C and D, expression levels of E-cadherin (red) and vimentin (green) was examined in CAL-IL-6 cells (C) or IOE-IL-6 cells (D) by fluorescent microscope (600×).
IL-6 Promotes Tumor Cell Metastasis

Therefore, we designed this study to further understand the role and mechanism(s) of IL-6–mediated EMT changes in human head and neck cancer. Our results show that IL-6 induces EMT changes in head and neck tumor cells via the activation of STAT3/Snail signaling pathway and STAT3 knockdown significantly reverses IL-6–mediated EMT changes. These results provide a mechanistic explanation for the prognostic studies that have directly linked IL-6 (30, 31), STAT3 signaling (44), and Snail (23, 45) with tumor recurrence, tumor metastasis, and poor survival in head and neck cancer patients. Recently, Sullivan and colleagues have shown that IL-6 promotes EMT changes in breast cancer by upregulating the expression of Twist (46). IL-6 is also shown to enhance human skin carcinoma cell invasiveness by inducing the overexpression of MMP-1 (29). Furthermore, as tumor cells often contain multiple genetic alterations and some of these genetic alterations may indirectly influence the IL-6 effect, we therefore examined the effect of IL-6 using immortalized IOE. Similar to tumor cells, IL-6 treatment transformed these IOE cells from typical epithelial cell phenotype to more scattered mesenchymal phenotype, a hallmark of EMT process. To our knowledge, this is the first study that has shown that IL-6 can induce EMT changes in immortalized oral epithelial cells and head and neck tumor cells.

We validated our in vitro results by implanting IL-6 overexpressing tumor cells (CAL27-IL-6) in SCID mice. Interestingly, IL-6 overexpression alone was enough to transform a nonmetastatic cell line (CAL27) into a metastatic cell line. It is possible that IL-6–mediated EMT changes may also contribute to subsequent steps of the metastatic cascade (e.g., anoikis resistance), as EMT-specific genes are known to play an important role in these metastatic steps (47, 48). Taken together, our results

Figure 5. STAT3 knockdown significantly reverses IL-6–mediated cell migration by inhibiting FAK activation. Akt, STAT3, or ERK1/2 proteins were knocked down in CAL-IL6 and IOE-IL6 cells by respective siRNAs. A, CAL-IL6 cell migration was examined by Xcelligence system and expressed as cell migration index. B, expression level of pFAK in CAL27 was examined by Western blotting. Equal protein loading was verified by stripping the blots and reprobing with total FAK antibody. C, IOE-IL6 cell migration was examined by Xcelligence system and expressed as cell migration index. D, expression level of pFAK in IOE cells was examined by Western blotting. Equal protein loading was verified by stripping the blots and reprobing with total FAK antibody.

Figure 6. IL-6 overexpression in tumor cells promotes tumor growth and EMT changes. A, tumor growth curves for CAL-27 cells overexpressing IL-6 (CAL-27-IL-6) or CAL-27 cells expressing vector alone (CAL-27-VC). *, represents a significant difference (P < 0.05, n = 6). B, H&E stained sections of CAL27-IL-6 and CAL27-VC tumors (400×). C, tumor samples stained with p-STAT3 (pY705, red) and DAPI (blue) then photographed at 600×. D, tumor samples stained with Snail (red) and DAPI (blue) then photographed at 600×. E, tumor samples stained with E-cadherin (red) and vimentin (green) then photographed at 200×. F, magnified area (600×).
provide novel insight into the role of IL-6 in HNSCC that could explain the direct correlation observed between high serum IL-6 levels and tumor metastasis in head and neck cancer patients.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

Grant Support

NIH/NCI-CA133250 (P. Kumar) and Joan’s Fund Research Grant (B. Kumar and P. Kumar).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 13, 2011; revised September 12, 2011; accepted September 30, 2011; published OnlineFirst October 5, 2011.
Molecular Cancer Research

IL-6 Promotes Head and Neck Tumor Metastasis by Inducing Epithelial–Mesenchymal Transition via the JAK-STAT3-SNAIL Signaling Pathway

Arti Yadav, Bhavna Kumar, Jharna Datta, et al.

Updated version Access the most recent version of this article at: doi:10.1158/1541-7786.MCR-11-0271

Supplementary Material Access the most recent supplemental material at: http://mcr.aacrjournals.org/content/suppl/2011/10/05/1541-7786.MCR-11-0271.DC1

Cited articles This article cites 47 articles, 15 of which you can access for free at: http://mcr.aacrjournals.org/content/9/12/1658.full.html#ref-list-1

Citing articles This article has been cited by 23 HighWire-hosted articles. Access the articles at: /content/9/12/1658.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.