Epigenetic Upregulation of Urokinase Plasminogen Activator Promotes the Tropism of Mesenchymal Stem Cells for Tumor Cells

Sai Murali Krishna Pulukuri¹, Bharathi Gorantla¹, Venkata Ramesh Dasari¹, Christopher S. Gondi¹, and Jasti S. Rao¹,²

Abstract

A major obstacle for the effective treatment of cancer is the invasive capacity of the tumor cells. Previous studies have shown the capability of mesenchymal stem cells (MSC) to target these disseminated tumor cells and to serve as therapeutic delivery vehicles. However, the molecular mechanisms that would enhance the migration of MSCs toward tumor areas are not well understood. In particular, very little is known about the role that epigenetic mechanisms play in cell migration and tropism of MSCs. In this study, we investigated whether histone deacetylation was involved in the repression of urokinase plasminogen activator (uPA) expression in MSCs derived from umbilical cord blood (CB) and bone marrow (BM). Induction of uPA expression by histone deacetylase inhibitors trichostatin A and sodium butyrate was observed in CB- and BM-derived MSCs examined. In vitro migration assays showed that induction of uPA expression by histone deacetylase inhibitors in CB- and BM-derived MSCs significantly enhanced tumor tropism of these cells. Furthermore, overexpression of uPA in CB-MSCs induced migration capacity toward human cancer cells in vitro. In addition, our results showed that uPA-uPAR knockdown in PC3 prostate cancer cells significantly inhibited tumor-specific migration of uPA-overexpressing MSCs. These results have significant implications for the development of MSC-mediated, tumor-selective gene therapies. Mol Cancer Res; 8(8); 1074–83. ©2010 AACR.

Introduction

Tumor cells deregulate the expression of growth factors, proteases, and extracellular matrix and cell surface proteins to gain their devastating invasion capacity (1). Several studies suggest that mesenchymal stem cells (MSC) can be used as vehicles for delivering therapeutic genes to treat invasive tumors (2-8). MSCs derived from umbilical cord blood (CB) and bone marrow (BM) exhibit tropism for experimental tumors and migrate toward outgrowing microsatellites (2, 6, 8). A thorough understanding of the molecular events that regulate the migration of MSCs to tumors is necessary to optimize the use of MSCs as therapeutic delivery vehicles.

Recently, several groups have shown that chemokines and growth factors overexpressed by tumor cells are able to attract MSCs to the tumor microenvironment (9-11). However, the observation that even microsatellites and invading tumor cells distant from the main tumor mass are targeted by MSCs suggests that additional local regulators for MSCs migration exist. Tumor cell invasion depends largely on the expression of extracellular matrix–degrading proteases, and interestingly, extracellular matrix–secreted soluble factors from tumor cell lines are able to promote stem cell migration (12). Among the large number of proteases involved in cell migration, urokinase plasminogen activator (uPA) is of particular importance because it initiates the activation of metalloproteinases and the conversion of plasminogen to plasmin (1, 13). Hence, we hypothesize that uPA may have a significant influence on the cell migration and tropism of MSCs.

An increasing body of evidence indicates that changes in chromatin structure by histone modification seem to play an important role in the regulation of gene transcription (14). In the present study, we examined the acetylation of histones associated with uPA promoter, uPA mRNA expression, and in vitro migration of MSCs treated with inhibitors of histone deacetylases (HDAC). Our results show...
that histone deacetylation plays a central role in the transcriptional regulation of the uPA gene in MSCs and that use of HDAC inhibitors results in the epigenetic activation of uPA.

Materials and Methods

Cell culture

Human prostate cancer cells (PC3), human breast cancer cells (MDA231), human glioma cells (U251), normal prostate epithelial cells (RWPE1), and human embryonic kidney cells (HEK293) were obtained from the American Type Culture Collection and cultured as directed. Human CB harvest and expansion of MSCs isolated from CB were conducted as previously reported (15). The separated MSCs were subcultured at a concentration of 1 × 10^6/100-mm dish in Mesencult basal medium (Stem Cell Technologies) and used for experiments during passages 5 to 8. The cells were incubated at 37°C in 5% CO2 in a humidified atmosphere. When the cells reached 80% confluency, they were detached with 0.25% trypsin and replated at a 1:3 ratio. Rat MSCs isolated from BM were purchased from Chemicon and maintained as per manufacturer’s instructions. Cells were treated with trichostatin A (TSA), sodium butyrate (SB), and 5-aza as previously described (16). Total RNA and genomic DNA were isolated from the treated cells using RNA and DNA isolation kits.

Overexpression and gene silencing

Adenoviral vectors were produced using the ViraPower Adenoviral Expression kit (Invitrogen). Virus transduction in CB-MSCs was then used in PCRs and analyzed by gel electrophoresis. We used the following primers for PCR: uPA-sense, 5′-TGC GTC CTG GTC GTG AGC GA-3′, and uPA-antisense, 5′-CAG CCG TGA CAC GCT TG-3′, and GAPDH-antisense, 5′-CGG AGT CAA CGG ATT TGG TCG TAT-3′, and GAPDH-antisense, 5′-AGC CTT CTC CAT GGT GGA GAC-3′. PCR conditions were as follows: 95°C for 5 minutes, followed by 40 cycles at 95°C for 1 minute, 55°C for 1 minute, and 72°C for 1 minute. The final extension was at 72°C for 5 minutes. Quantitative reverse transcription-PCR (RT-PCR) was done using the iCycler IQ real-time PCR system (Bio-Rad) with the SYBR Green Mastermix as per manufacturer’s instructions. All reactions were done in triplicate. No reverse transcriptase or no template served as the negative controls.

Reverse transcription-PCR analysis

Cellular RNA was isolated from MSCs using the Qiagen RNeasy kit. RNA (1 μg) was treated with DNase (10 U/μg of RNA for 1 h) and used as a template for the RT reaction (20 μL). The RT reaction mix (Invitrogen) contained 1 μL (10 pm) of primers. The resultant cDNA was then used in PCRs and analyzed by gel electrophoresis. We used the following primers for PCR: uPA-sense, 5′-TGC GTC CTG GTC GTG AGC GA-3′, and uPA-antisense, 5′-CAG CCG TGA CAC GCT TG-3′, and GAPDH-antisense, 5′-CGG AGT CAA CGG ATT TGG TCG TAT-3′, and GAPDH-antisense, 5′-AGC CTT CTC CAT GGT GGA GAC-3′. PCR conditions were as follows: 95°C for 5 minutes, followed by 40 cycles at 95°C for 1 minute, 55°C for 1 minute, and 72°C for 1 minute. The final extension was at 72°C for 5 minutes. Quantitative reverse transcription-PCR (RT-PCR) was done using the iCycler IQ real-time PCR system (Bio-Rad) with the SYBR Green Mastermix as per manufacturer’s instructions. All reactions were done in triplicate. No reverse transcriptase or no template served as the negative controls.

Nuclear extract preparation and immunoblot analysis

Nuclear extracts were prepared from control and TSA-treated CB-MSC and BM-MSC using a nuclear extraction kit from Panomics, Inc., as per the manufacturer’s
instructions. Equal amounts of nuclear extracts were resolved by SDS-PAGE and then blotted with anti-acetylated histone H3, anti-acetylated histone H4, and histone H3 antibodies. Histone H3 was used as a loading control. B, densitometric analysis of immunoblots. Data are normalized to H3, averaged, and expressed as percentage of control (CTL, 1). C, schematic representation of the uPA promoter region and the location of primers used for PCR amplification in the ChIP assay. Bent arrow, transcriptional start site. D, chromatin fragments from CB- and BM-MSCs cultured with (+) or without (−) TSA for 16 h were immunoprecipitated with antibody to acetylated (Ac) histones H3 and H4 or control normal rabbit serum (NRS).

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) assays were done as per the manufacturer’s instructions (Upstate Biotechnology). In brief, cells (1 × 10⁶ cells/100-mm dish) were fixed by adding formaldehyde at a final concentration of 1% and incubating for 10 minutes at 37°C. The cells were washed twice with ice-cold PBS containing protease inhibitors (1 mmol/L phenylmethylsulfonyl fluoride, 1 μg/mL aprotinin, and 1 μg/mL pepstatin A), harvested, and treated with SDS lysis buffer for 10 minutes on ice. The resulting lysates were sonicated to shear the DNA to fragment lengths below 1,000 bp (amplitude 60%, 4 × 10⁴ s, Fisher Sonic Dismembrator 60). After precleaving the lysates, 4 μg of specific antibodies (anti-acetylated histone H3 and anti-acetylated histone H4; Cell Signaling Technology, Inc.) were used to immunoprecipitate the protein-DNA complexes. Antibody controls were also included for each ChIP assay; no precipitation was observed. The antibody-protein complexes were collected using salmon sperm DNA-protein A-agarose slurry and washed several times as per the manufacturer’s instructions. The immunocomplexes were eluted with 1% SDS and 0.1 mol/L NaHCO₃, and the cross-links were reversed by incubation at 65°C for 4 hours in the presence of 200 nmol/L NaCl. The samples were treated with proteinase K for 1 hour, and the DNA was purified by phenol/chloroform extraction and ethanol precipitation. The recovered DNA was resuspended in 30 μL of H₂O and used as templates for PCR of uPA or β-actin gene promoters. The following primers were used for PCR: uPA promoter-sense, 5′-CAG GTG CAT GGG AGG AAG C-3′, and uPA promoter-antisense, 5′-AGG GCC GGC GCC GGG GCG G-3′; β-actin promoter-sense, 5′-CCA ACG CCA AAA CTC TCC C-3′, and β-actin promoter-antisense, 5′-AGC CAT AAA AGG CAA CTT TCG-3′. Initially, PCR was done with different numbers of cycles or dilutions of input DNA to determine the linear range of the amplification; all results shown fall within this range. Following 30 cycles of amplification, PCR products were run on 2% agarose gels and analyzed by ethidium bromide staining.
Methylation-specific PCR
Genomic DNA treated with sodium bisulfite was amplified using primers specific to the methylated and unmethylated forms of DNA sequences of interest. We used the following MSP primers: for the unmethylated uPA sequence, 5′-AGT GTT GTG GAA GTA TGT GG-3′ (sense) and 5′-CCA CCA CAA CCC CAC CCA AA-3′ (antisense); for the methylated uPA sequence, 5′-AGC GTT GCG GAA GTA CGC GG-3′ (sense) and 5′-CCG CCG CAG CCC CGC CCA AA-3′ (antisense). After denaturation at 95°C for 5 minutes, 40 PCR cycles were completed with the bisulfite-treated genomic DNA as a template. Ten microliters of the PCR-amplified fragments were loaded onto 2% agarose gels for analysis. Positive controls used for methylation-specific PCR included DNA from PC3 cells as unmethylated DNA control and CpGenome Universal methylated DNA as methylated DNA control (Chemicon International). Negative control MS-PCRs were done using water only as a template.

Immunofluorescence detection
MSCs treated with control and TSA were fixed with 4% paraformaldehyde and incubated with anti-AcH4 (1:500; Cell Signaling Technology). After washing, fluorescent secondary antibodies (Santa Cruz Biotechnology) were added at a 1:500 dilution. The cells were again washed thrice with PBS and counterstained with Hoechst. Fluorescent images were acquired using a charge-coupled device RT Slider Spot Camera (Diagnostic Instruments, Inc.) connected to a microscope (Olympus) and managed by a computer equipped with the spot RT software version 3.5 (Diagnostic Instruments).

Densitometry
ImageJ software (NIH) was used to quantify band intensities. Data are represented as relative to the intensity of the indicated loading control.

Statistical analysis
Statistical comparisons were done using ANOVA for analysis of significance between different values using the GraphPad Prism software. Values are expressed as mean ± SD from at least three separate experiments, and differences were considered significant at a P value of <0.05.

Results
TSA induces accumulation of acetylated histones in chromatin associated with the uPA gene in MSCs
We have previously shown that the levels of uPA mRNA expression in human cancer cell lines correlate with their state of histone acetylation, and that TSA, an inhibitor of HDACs, induces uPA in the human cancer cell lines (16). In the present study, we found that uPA mRNA expression was undetectable in MSCs isolated from CB and BM (Supplementary Fig. S1A). We treated uPA-silenced MSCs isolated from CB (n = 2) and BM (n = 2) with 100 nmol/L TSA for 16 hours and performed immunoblot analysis on the nuclear extracts using antibodies to acetylated histones H3 and

FIGURE 2. Effects of TSA on uPA expression and cellular migration in MSCs. A, uPA mRNA expression (top) and activity levels (bottom) in control- and TSA-treated CB- and BM-MSCs were analyzed by RT-PCR and fibrin zymography, respectively. B, uPA mRNA expression (top) and activity levels (bottom) in control and SB-treated CB- and BM-MSCs were analyzed by RT-PCR and fibrin zymography, respectively. C, the migration capacity of the control and TSA-treated CB-MSCs toward human cancer cells PC3 and MDA231 were assessed in vitro by Transwell migration assay. Columns, percentage of the DMEM control (*, P < 0.05); bars, SD. D, the migration capacity of the control and TSA-treated CB-MSCs toward nontumor cells RWPE1 and HEK293 were assessed as described in C.
Accumulation of acetylated histones was observed in TSA-treated CB- and BM-MSCs (Fig. 1A and B). A similar trend was observed by immunofluorescence assay as well (Supplementary Fig. S2).

Next, we performed the ChIP assay on the uPA promoter to determine whether the patterns of histone acetylation were altered upon TSA treatment. Chromatin fragments from MSCs cultured with or without TSA for 16 hours were immunoprecipitated with antibodies to acetylated histones H3 and H4. DNA from the immunoprecipitates was isolated, and PCR was done using uPA promoter primers (Fig. 1C). Acetylation of histones H3 and H4 associated with the uPA promoter region in MSCs isolated from CB and BM was undetectable before TSA treatment. However, we observed remarkable increases in the acetylation of histones H3 and H4 in the promoter region of both CB- and BM-MSCs after treatment with TSA (100 nmol/L, 16 hours; Fig. 1D). We also carried out PCR on the same set of immunoprecipitated DNA fractions for β-actin promoter as a control. The relative levels of acetylated histones H3 and H4 at the β-actin promoter was similar in all TSA-treated and nontreated cells. These results suggest the potential involvement of histone deacetylation in loss of uPA expression in MSCs isolated from CB and BM. Our observations are in line with the previously shown data that TSA, as well as other HDACs, induce the accumulation of acetylated histones in different stem cell populations (19, 20).

Effects of TSA on uPA expression and migration capacity of MSCs

If histone deacetylation is associated with transcriptional repression, then histone acetylation following TSA treatment should lead to uPA expression. According to the RT-PCR results, treatment with TSA did induce uPA mRNA expression in MSCs isolated from CB and BM (Fig. 2A, top). We then investigated whether the resulting increases in mRNA level were sufficient to increase uPA activity levels. As expected, a corresponding increase in uPA activity levels was also observed after treatment of CB- and BM-MSCs with TSA (Fig. 2A, bottom). SB, a HDAC inhibitor differing from TSA in structure, showed similar results in all the examined MSCs (Fig. 2B). These results indicate that the effect of TSA on uPA expression can be extended to other HDAC inhibitor SB. They also suggest that the induction of uPA expression by HDAC inhibitors was not confined to a single cell source of MSC. In line with our findings, previous studies showed that HDAC inhibition was associated with gene activation by increasing H3 and H4 acetylation levels in different stem cell populations (19, 20). Because it is known that uPA can be silenced by promoter DNA methylation (16, 21), we examined the effects of the DNA methylation inhibitor 5-aza on the reactivation of uPA in CB- and BM-MSCs by RT-PCR. However, treatment with higher doses (1-10 μmol/L) of 5-aza for 5 days did not restore the expression of uPA in all MSCs analyzed (data not shown). The absence of reexpression following 5-aza treatment was consistent with the
observation that the uPA promoter was unmethylated in CB- and BM-MSC (Supplementary Fig. S1B).

To determine whether HDACI-induced uPA functionally contributes to the migration of MSCs, the migration capacity of the control and TSA-treated MSCs was determined by in vitro Transwell migration assay. Induction of uPA expression in BM- and CB-MSCs treated with 100 nmol/L TSA for 16 hours resulted in a significant increase in the migration capacity of these cells toward human cancer cell lines PC3 and MDA-231 (Supplementary Fig. S3A; Fig. 2C). In contrast, there was no significant increase in migration of uPA reexpressing MSCs toward non-tumor cell lines RWPE1 and HEK293 cells (Supplementary Fig. S3B; Fig. 2D), further confirming the tumor-specific nature of the MSC migration. Incubation of TSA-treated MSCs with the anti-uPA antibody blocked this acquired tumor-specific migration potential. In contrast, TSA-treated MSCs incubated with an isotype-matched nonspecific antibody did not exhibit decreased migration toward tumor cells PC3 and MDA-231 (Supplementary Fig. S3; Fig. 2C). This provided further convincing evidence that this increase in BM- and CB-MSC migration after treatment with TSA is due to the induction of uPA expression. These results also suggest an important role for HDACI-induced uPA in tumor-tropic behavior exhibited by these cells.

Overexpression of uPA enhances the tumor-specific migration ability of MSCs

To further confirm the biological function of uPA, we investigated whether the overexpression of the uPA cDNA in MSCs would affect the migration. We used adenoviral vectors to create stable cell lines overexpressing uPA in MSCs isolated from CB. We observed a high expression level of uPA in each of the four uPA-transfected cells (uPA-2, uPA-10, uPA-11, and uPA-13) but not in parental (mock) or empty vector controls (Fig. 3B). These cells also responded to other human cancer cell lines, MDA-231 and U251, by displaying significant migration advantage over control cells (Fig. 3C). Interestingly, the uPA-overexpressing MSCs did not change their migration capacities when nontumor cell lines RWPE1 and HEK293 were seeded in the bottom chamber in the assays (Fig. 3D). Moreover, the amount of cells migrating to plain DMEM cell culture medium remained similar between the uPA-expressing cells and the controls (Fig. 3). These results indicated that uPA-overexpressing MSCs were capable of stimulating tumor-specific MSC migration, and that the migratory ability of MSCs was not affected by adenoviral transduction.

Activation of extracellular signal-regulated kinase by uPA mediates the tumor-specific migration capacity of MSCs

Because mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) activation plays an important role in uPA-mediated cell migration (13, 18), we investigated whether uPA would affect ERK activation in MSCs. Immunoblot analysis showed that ERK1/2 phosphorylation significantly increased in uPA-overexpressing MSCs. Treatment of uPA-expressing MSCs with ERK inhibitor (50 μmol/L, U0126) completely blocked the phosphorylation of ERK1/2 (Supplementary Fig. S4A; Fig. 4A). The amount of total ERK1/2 protein levels was unchanged among these cells. Treatment of MSCs with 100 nmol/L TSA for 16 hours also resulted significant increase in ERK1/2 phosphorylation, and this effect was reversed by an ERK inhibitor (50 μmol/L, U0126; Supplementary Fig. S4B). We further observed that the tropism of these ERK inhibitor–pretreated uPA-expressing MSCs toward PC3 cells was inhibited drastically in Transwell migration assays, and the number of migrating cells went down to a level close to that of basal cell migration in response to serum-free DMEM (Fig. 4B). These results suggest that ERK activation in uPA-expressing cells might be one possible mechanism underlying the augmented tumor tropism of these cells.

Effects of tumor cells expressing uPA and uPAR on the migration ability of MSC/uPA

It has been reported recently that uPA and uPAR released from human tumor cells may be a potential...
chemoattractant involved in the tropism of MSC (22). We compared the endogenous expression levels of uPA and uPAR in the tumor and nontumor cell lines. As shown in Fig. 5A and B, uPA and uPAR expression at the mRNA and protein levels were significantly higher in tumor cell lines PC3, MDA231, and U251 compared with the nontumor cell lines RWPE1 and HEK293, which expressed undetectable levels of these proteins. These results showed a strong correlation between uPA and uPAR expression levels in tumor cell lines and the migration ability of MSCs. To determine the role of tumor cells expressing uPA and uPAR in regulating MSC migration, we used shRNAs to knockdown endogenous uPA and uPAR gene expression in the human prostate cancer cell line PC3, which has been shown to have robust expression of uPA and uPAR (Fig. 5). We developed pcDNA3-CMV vectors containing small hairpin constructs capable of generating 19- or 21-nucleotide duplex RNAi oligonucleotides corresponding to either uPA or uPAR. In addition, a single bicistronic construct driven by CMV promoter to deliver dual small hairpins targeted against both uPA and uPAR was constructed to test the effectiveness of simultaneously inhibiting expression of two endogenous genes. A pcDNA3-scrambled vector with an imperfect sequence, which does not form a perfect hairpin structure, was used to develop the scrambled vector for use as a control (shCTL). The empty vector and scrambled vector controls have been tested in multiple cell lines and do not show any toxicity to cells as shown by MTT assay after transfection and have no effect on the expression of housekeeping genes GAPDH and β-actin. We previously reported that these gene-specific single and bicistronic shRNA constructs significantly inhibited uPA and uPAR expression at both the mRNA and protein levels in the prostate tumor cell line PC3 (18). These results also showed that ERK1/2 phosphorylation was completely abolished in the shuPA-uPAR–transfected PC3 cells but not in the cells transfected with either sh-uPA or sh-uPAR. These findings provide evidence that binding of uPA with uPAR activates ERK signaling, and molecular targeting against both uPA and uPAR would be a robust way to prove its biological contribution. We then used the shRNA-transfected PC3 cells as chemoattractants for MSC/uPA in a Transwell migration assay. The migration of MSC/uPA induced by shuPA-uPAR-transfected PC3 cells was 55% less than that induced by shCTL-transfected PC3 cells. In contrast, the migration of MSC/uPA did not change significantly in PC3 cells transfected with either sh-uPA or sh-uPAR (Fig. 6). Taken together, these results suggest that tumor cells expressing uPA and uPAR play a major role in chemoattraction of MSC/uPA to tumors.

Discussion

The failure of current therapies for malignant disease is mainly due to the ability of the tumor cells to extensively invade the surrounding normal tissue, hence escaping localized treatments. MSCs represent an attractive option as delivery vehicles for therapeutic genes and their products as a result of their apparent ability to both home in on the tumor site and evade the host immune response (7). Previous studies have shown the inherent tumor-tropic property of MSCs and their use as cellular vehicles for effective delivery of therapeutic agents to several types of invasive tumors (2-8). Their abilities to track infiltrating tumor cells and localize to distant tumor microfoci make MSCs attractive gene therapy vehicles with promising clinical potential. Identification of molecular mechanisms involved in MSCs tropism will be important for the development of MSC-based tumor therapies.

A limited number of stem cell attractants and cytokines emanating from solid tumors have been identified (9-11). Recent studies suggest that epigenetic mechanisms play an important role in controlling stem cell potency and cell fate decisions (23-25). However, the molecular mechanisms controlling stem cell migration to tumors remain poorly understood. In the present study, we have provided evidence for the first time that histone deacetylation is involved in the repression of uPA expression in MSCs derived from CB and BM. Histone deacetylation is a critical component of chromatin remodeling and transcriptional regulation (26). The acetylation level of core
histones results from the balance between the activities of HDACs and histone acetyltransferases. Inhibition of HDACs by TSA leads to the activation of only specific target genes through increased histone acetylation (27, 28). Our experiments showed that induction of uPA expression by TSA in CB- and BM-MSCs was accompanied by a remarkable increase in acetylation of histones H3 and H4 associated with the uPA promoter region (~231 to ~33). The increase of core histone acetylation at the promoter region of the uPA gene after TSA treatment indicates that the chromatin structure of uPA promoter may become a loose and noncondensed structure, which is usually necessary for the start of transcription (29, 30).

Ample evidence indicated that increased levels of uPA are crucial for cell migration and invasion (31-34). Our *in vitro* migration assays showed that HDACI-induced uPA activation might stimulate the tumor-specific migration capacity of MSCs. The importance of HDACI-induced uPA activity to stimulate MSC migration was confirmed by using function-blocking uPA antibodies. Moreover, overexpression of uPA was seen in the current study to provide MSCs an increased migration capacity toward human tumor cells *in vitro*. Our results also indicated that overexpression of uPA activates ERK in MSCs, and inhibiting ERK activation resulted in the loss of the migration activity of these cells.

Cell migration is a highly complex process and involves several factors, from sensing of environmental cues, restructuring the cytoskeleton, dynamic regulation of cell attachment, and detachment to extracellular matrix, to signaling between all these processes to coordinate the movements. The results that uPA-overexpressing cells and control cells migrated at the same rate in plain cell culture medium or toward nontumor cells suggest that uPA overexpression provided no beneficial effects on the general movement of MSCs. Most interestingly, uPA-overexpressing cells respond strongly to tumor cell-secreted cues in Transwell migration assays. These data strongly suggested that uPA overexpression increases the sensitivity of MSCs to appropriate signals that stimulate cell migration.

There is considerable evidence that the ERK pathway plays a central role in uPA-uPAR system regulated cell physiology (35). Coupling of uPA with uPAR orchestrates several different signaling molecules that form a unique network of several different types of biological responses, such as proliferation, migration, invasion, angiogenesis, and metastasis. These biological responses to uPA-uPAR binding seem to be highly specific to cell type, the nature of the downstream signaling molecule, and the level of its expression. Gonias and coworkers (36) showed that binding of uPA with uPAR activates ERK1/2 and that this induced ERK activity is required for uPA-induced MCF-7 breast cancer cell migration. They further showed that a signaling cascade including FAK, Src, and Shc is responsible for uPA-induced ERK activation and cell migration (37). In contrast, uPA-induced vascular smooth muscle cell migration and proliferation required the activation of the Stat pathway (38). A previous study in human breast cancer cells showed that uPA-induced mitogenic activity requires activation of both Stat and ERK pathways (39).

Prior work from our laboratory has shown that simultaneous silencing of uPA and uPAR in PC3 cells using a single plasmid construct expressing shRNAs for both uPA and uPAR abrogated uPA-uPAR signaling to downstream target molecules such as ERK1/2 and Stat3, and ultimately resulted in a dramatic reduction of tumor cell invasion (18). These findings provide evidence that the binding of uPA with uPAR activates signaling cascades to regulate cell migration, invasion, proliferation, and survival. In the present study, RNAi for uPA-uPAR in PC3 cells showed that significant suppression of uPA overexpression stimulated MSC migration. Knockdown of uPA or uPAR alone in PC3 cells did not show significant decrease in MSC/uPA migration. We believe that this was because blocking either uPA or uPAR alone may not sufficiently affect the downstream signals to attract MSCs. This notion has been supported by data from our previous study that simultaneous inhibition of uPA and uPAR impair downstream signaling pathways in PC3 prostate cancer cells (18).

In summary, we found that HDACIs enhances the tropism of MSCs for tumor cells through induction of uPA expression. The role of HDACI-induced uPA in MSCs is a novel finding. Furthermore, we observed the ERK activation in uPA-expressing MSCs and treatment with the ERK inhibitor significantly reduces tumor-specific MSC migration. Further studies are warranted to determine the basic mechanisms underlying the effects of uPA to enhance MSC migration and to investigate the therapeutic utility of this observation. An adequate understanding of these epigenetic mechanisms could have important implications for the effective cellular delivery of therapeutic agents for tumor therapy.
Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Shellee Abraham for preparing the manuscript, and Diana Meister and Sushma Jasti for the manuscript review.

References

34. Yamamoto M, Sawaya R, Mohanam S, et al. Expression and localization of...

Molecular Cancer Research

Epigenetic Upregulation of Urokinase Plasminogen Activator Promotes the Tropism of Mesenchymal Stem Cells for Tumor Cells

Sai Murali Krishna Pulukuri, Bharathi Gorantla, Venkata Ramesh Dasari, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-09-0495

Supplementary Material
Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2010/09/09/1541-7786.MCR-09-0495.DC1

Cited articles
This article cites 38 articles, 21 of which you can access for free at:
http://mcr.aacrjournals.org/content/8/8/1074.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.