Rapid Extravasation and Establishment of Breast Cancer Micrometastases in the Liver Microenvironment

Michelle D. Martin1, Gert-Jan Kremers2, Kurt W. Short2, Jonathan V. Rocheleau5, Lei Xu3, David W. Piston2, Lynn M. Matrisian1, and D. Lee Gorden1,4

Abstract
To examine the interplay between tumor cells and the microenvironment during early breast cancer metastasis, we developed a technique for ex vivo imaging of murine tissue explants using two-photon microscopy. Cancer cells in the liver and the lung were compared by imaging both organs at specific time points after the injection of the same polyomavirus middle T-initiated murine mammary tumor cell line. Extravasation was greatly reduced in the lung compared with the liver, with 96% of tumor cells in the liver having extravasated by 24 hours, compared with only 22% of tumor cells in the lung that have extravasated. In the liver, imaged cells continually transitioned from an intravascular location to an extravascular site, whereas in the lung, extravasation rates slowed after 6 hours. Within the liver microenvironment, the average size of the imaged micrometastatic lesions increased 4-fold between days 5 and 12. Histologic analysis of these lesions determined that by day 12, the micrometastases were heterogeneous, consisting of both tumor cells and von Willebrand factor-positive endothelial cells. Further analysis with intravenously administered lectin indicated that vessels within the micrometastatic tumor foci were patent by day 12. These data present the use of two-photon microscopy to directly compare extravasation times in metastatic sites using the same tumor cell line and highlight the differences in early events and metastatic patterns between two important secondary sites of breast cancer progression with implications for future therapy. Mol Cancer Res; 8(10); 1319–27. ©2010 AACR.

Introduction
The liver is one of the most common solid organ sites of metastasis for breast cancer. In spite of this, the liver microenvironment remains understudied although patients with liver metastases make up a poor prognosis group with median survival rates of less than 6 months and reduced response to systemic therapy (1-3). The site of tumor metastasis is influenced by both the primary tumor cell and the distant microenvironment into which it spreads; therefore, it is important to better understand the role of the liver microenvironment in early breast cancer metastasis (4, 5).

One of the earliest events in metastasis is the extravasation of tumor cells from the vasculature into the surrounding stroma of the metastatic site. Previous work from different groups has shown that the time to extravasation of tumor cells can differ in distinct microenvironments. The work of Morris et al. determined that more than 95% of the malignant melanoma cells injected into the liver extravasated (6). However, Muschel and colleagues have observed attachment of both HT1080 fibrosarcoma cells and 4T1 mammary carcinoma cells to the endothelium and intravascular growth in the lung vasculature (7, 8). It is not clear if these discrepancies are the result of differences in technical approach, tumor cell type, and/or organ microenvironment.

The development of two-photon excitation microscopy has made it possible to examine tumor cells inside the intact organ microenvironment in which they reside based on the ability of the laser to penetrate deeper into tissue and provide richer detail than standard one-photon confocal microscopy techniques (9, 10). This is especially beneficial for highly autofluorescent tissues such as the liver. This technique has been previously used to visualize tumor cells in sites including the mammary fat pad and the lung (7, 10, 11). Past experiments using two-photon microscopy to investigate early metastatic tumor cell behavior have yielded varying results depending on the type of tumor cells used and the site at which they are imaged (8, 11, 12). Therefore, for our study, we use the same breast cancer cell line in all of our imaging studies to directly compare the effects of two distinct microenvironments on early tumor cell extravasation and establishment.
We developed a technique for ex vivo two-photon imaging of the liver and lung microenvironments in a murine model in an effort to better understand tumor/stromal interactions at these important secondary sites. Stromal cells were found to incorporate in micrometastatic colonies, and patent vasculature was visualized as early as 12 days following tumor cell injection in the liver. A clearer understanding of the earliest events in metastatic tumor establishment has therapeutic implications for cancer patients that currently do not respond well to systemic therapy.

Materials and Methods

Animal models
All studies were conducted following review and approval by the Vanderbilt Institutional Animal Care and Use Committee. FVB/N mice were purchased from The Jackson Laboratory. R221A-GFP tumor cells previously generated by the laboratory (13) were used for all assays. We verified the R221A-GFP cell line by morphologic and growth rate analysis according to the American Type Culture Collection guidelines to ensure that they had not become altered by the use of the R221A-GFP cell line by morphologic and growth rate analysis.

Materials and Methods

Animal models
All studies were conducted following review and approval by the Vanderbilt Institutional Animal Care and Use Committee. FVB/N mice were purchased from The Jackson Laboratory. R221A-GFP tumor cells previously generated by the laboratory (13) were used for all assays. We verified the R221A-GFP cell line by morphologic and growth rate analysis according to the American Type Culture Collection guidelines to ensure that they had not become altered by the use of the R221A-GFP cell line by morphologic and growth rate analysis.

Preparation of livers and lungs for ex vivo imaging
At the specified time for two-photon microscopy imaging, mice were anesthetized using ketamine and xylazine (Fort Dodge Animal Health) at doses of 90 and 5 mg/kg, respectively, by i.p. injection and placed on mechanical ventilation at a rate of 60 breaths per minute through a surgical tracheostomy. For liver imaging, the abdomen was prepped in sterile fashion and the spleen was isolated by opening up the abdomen through the previous incision used to inject the tumor cells into the spleen. The tomato lectin-Qdot vascular label was injected into the spleen and allowed to circulate throughout the body for 6 minutes. Next, the suprahepatic and infrahepatic venacaval portions, as well as the abdominal aorta, were isolated and cut with scissors to provide outflow without increasing pressure within the liver. Mice were perfused using gravity pressure to rid the liver of blood and hemoglobin that interferes with the imaging of green fluorescent protein (GFP). Perfusion under gravity resulted in a pressure significantly lower than the systemic pressure in the animal. After the effluent had cleared, the liver was resected en bloc, placed in a glass bottom dish (MatTek Corp.), and immediately imaged using two-photon microscopy. All organ explants were completely imaged within 45 minutes of removal from the animal to minimize any confounding effects due to cellular and tissue breakdown occurring in the resected organ. For imaging of the lung, a similar preparation was done with a few alterations. For labeling of the vasculature of the lungs, the lectin-Qdot complex was injected into the right ventricle of the still beating heart. The lungs were then perfused with PBS through both the left and right ventricles and resected in the inflated state by tying off the trachea.

For the analysis of vascular patency, mice were anesthetized using 2% isoflurane (Baxter) and the abdomen was opened. The lectin-Alexa Fluor 568 complex was injected into the spleen and allowed to circulate throughout the body for 6 minutes. The chest was then rapidly opened and the vasculature was perfused with 3% paraformaldehyde in PBS (pH 7.4) through an 18-gauge needle. Perfusion was done through both the spleen and the left ventricle of the heart. The liver was then removed, immersed in fixative for 4 hours at 4°C, and then processed and sectioned for immunofluorescence.

Histology and immunohistochemistry
Liver tissues were fixed in 3% paraformaldehyde (EMD Biosciences) for 24 hours and then placed in a 20% sucrose solution for 48 hours. The tissues were then embedded in tissue freezing medium (Triangle Biomedical Sciences) and stored at -20°C for sectioning. For immunohistochemistry, 5-μm sections of liver were assessed for expression of GFP using a goat anti-GFP antibody (Abcam), for CD45 using an antымouse antibody (Serotech), and for von Willebrand factor (vWF) using a rabbit polyclonal anti-vWF antibody (Dako). Alexa Fluor secondary antibodies were used in all staining procedures (Invitrogen). For negative controls of CD45 and vWF, mouse IgG and rabbit IgG were used, respectively (Sigma). Staining for cell nuclei was done with...
Volumetric analysis of tumors

Average tumor volume at day 5 and day 12 were determined by segmenting the tumor tissue in each z-stack based on the GFP fluorescence. Z-stacks were median filtered and a threshold was applied to select for GFP fluorescence. The segmentation was refined by a series of opening and closing operations. Tumor volumes were converted from voxels to cubic micrometers by multiplying with the voxel volume (0.09 μm³). In the analysis, this volume was used to define the tumor foci area.

Ex vivo data analysis and image processing

Ex vivo image data were analyzed by visual inspection. Tumor cells were divided into two subclasses, intravascular or extravascular, based on their location relative to the vasculature. To determine the location of a cell, a variety of images were analyzed, including three-dimensional representations of the image stack and orthogonal images of the stack. The criterion that determined if a cell was intravascular was the presence of a red vascular label that completely surrounded the cell in both the orthogonal and three-dimensional representations. For the determination of a cell being extravascular, the cell either had no red surrounding it in the images or was incompletely surrounded by a red vascular label. Cells were called undetermined if their localization could not be accurately resolved.

Statistical analyses

To model the percentage of extravascular cells at specific time points, we fit a logistic regression model using both the liver and the lung data. Tumor environment (liver or lung), time, and their interaction were included as factors. The differences in percent of extravascular cells imaged between the liver and the lung microenvironments at each time point were tested by looking at the interaction terms. The estimated probability of extravasation and its 95% confidence intervals at each time point are shown in Table 1. More tumor cells in the liver extravasated over time than those in the lung. The differences between the two became statistically significant at 24 hours. For the vascular staining index data as measured by staining for vWF, we first checked the normality assumption using normal qq plots (results not shown). The distribution of the vascular staining index at day 5 and day 12 is displayed using a box plot in Fig. 3D. Both the qq plot and the box plots indicated that the distribution of the index was highly skewed and not likely to be normal. Therefore, the nonparametric Wilcoxon rank-sum test was used to compare the median of the vascular staining index between the two time points. All analyses were done and the graph in Fig. 3D was generated using R, an open source free software for statistical computing and graphics (http://www.r-project.org/). The bar graphs in Fig. 4 were generated using Igor Pro 5.0 software (Wavematrix), and the line graphs in Fig. 2 were generated using GraphPad Prism 5 (GraphPad Software, Inc.).

Results

Development of the two-photon ex vivo liver imaging method

The R221A clonal cell line was isolated from a mammary tumor in the mouse mammary tumor virus (MMTV)-PyVT mouse on the FVB/N background and engineered to stably express GFP as previously described (13, 15). These cells can be injected into a FVB/N syngeneic host that is fully immunocompetent, allowing studies that consider the role of the immune system in tumor phenotype. For the establishment of metastases in an experimental model of liver metastasis, 1 × 10⁶ R221A-GFP cells were injected into the spleen of an anesthetized female mouse and reached the liver via the hepatic portal circulation to form multifocal metastatic disease in the liver. These cells have been previously shown to form reliable, reproducible liver metastases in our hands⁶, and our laboratory has prior

⁶ Unpublished data.
experience using the splenic injection model to induce liver metastases (14). For the establishment of lung metastases, 1×10⁶ R221A-GFP cells were injected into the lateral tail vein of an anesthetized female mouse as previously described (15). A complex of biotinylated tomato lectin– and streptavidin-coated Qdot585 was injected into either the spleen and heart (for liver imaging) or the heart alone (for lung imaging) to bind and label the vasculature (Fig. 1A and D). The complex uniformly labeled the vasculature of both organs, except when the presence of tumor cells in the vessels significantly obstructed the binding of the vascular label. The mice were then perfused with PBS under gravity pressure so as not to introduce artificially elevated pressures into the pulmonary or systemic circulations and to remove blood from the liver or lung that would interfere with the imaging of GFP. The excised intact organs were then placed onto a microscopy dish and imaged immediately. Multiple z-stacks 20 to 100 μm thick were recorded at random areas containing tumor cells. We were able to successfully separate the signals from the GFP-expressing tumor cells and the Qdot-labeled vasculature, resulting in three-dimensional data sets clearly denoting the relationship of tumor cells to the liver (Fig. 1B and C) and lung vasculature (Fig. 1E and F).

Influence of metastatic site on time to extravasation

To investigate whether differences in the liver and lung microenvironments affected the timing of extravasation of the breast tumor cells, liver and lung experimental metastasis models were compared using the same breast cancer cell line. Liver and lung explants were imaged at 2, 6, 12, and 24 hours after tumor cell injection to compare the percentage of tumor cells that had extravasated in each metastatic site. To determine the location of tumor cells in relation to the vasculature, we used both three-dimensional reconstructions as well as viewing of the orthogonal planes from the imaged stacks (Fig. 1B, C, E, and F; Supplementary Movie S1B, C, E, and F). At 24 hours after tumor cell injection, the majority of tumor cells in the liver had extravasated (56%). In contrast, at this time, only a minority...
of the tumor cells in the lung had extravasated (22%; Table 1). These results are similar to those reported by Muschel and colleagues who observed minimal extravasation of HT1080 and 4T1 cells in the lung at 24 hours (7, 8).

By directly comparing the time course of tumor cell extravasation in the liver to that in the lung, we determined that extravasation proceeds throughout a 24-hour window in the liver (Fig. 2A), whereas the small amount of extravasation seen in the lung occurs mostly within 6 hours after tumor cell injection (Fig. 2B). Image analysis revealed that the time point at which the majority of breast cancer cells moved from an intravascular to an extravascular site in our liver metastasis model occurred between 12 and 24 hours after injection (Fig. 2A; Table 1). Between these time points, the majority of imaged tumor cells became localized in the extravascular space; in contrast, at 24 hours, the majority of breast cancer cells remained within the vasculature of the lung (Fig. 2B; Table 1). By 24 hours, the estimated probability of a cell being located in the extravascular space was significantly different in the liver relative to the lung ($P = 0.0001$).

Table 1. Data and statistical analyses from two-photon microscopy of the liver and the lung

<table>
<thead>
<tr>
<th>Time point</th>
<th>Total no. of cells imaged</th>
<th>Total no. of intravascular cells (mean % intravascular cells)</th>
<th>Total no. of extravascular cells (mean % extravascular cells)</th>
<th>Total no. of uninformative cells</th>
<th>Estimated probability of cells being extravascular (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver time course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 h ($n = 2$)</td>
<td>52</td>
<td>45 (85)</td>
<td>2 (4)</td>
<td>5</td>
<td>0.0385 (0.0065-0.1140)</td>
</tr>
<tr>
<td>6 h ($n = 3$)</td>
<td>90</td>
<td>72 (81)</td>
<td>6 (7)</td>
<td>12</td>
<td>0.0667 (0.0270-0.1305)</td>
</tr>
<tr>
<td>12 h ($n = 3$)</td>
<td>63</td>
<td>38 (58)</td>
<td>19 (33)</td>
<td>6</td>
<td>0.3065 (0.2012-0.4274)</td>
</tr>
<tr>
<td>24 h ($n = 5$)</td>
<td>146</td>
<td>54 (33)</td>
<td>77 (56)</td>
<td>15</td>
<td>0.5274* (0.4465-0.6074)</td>
</tr>
<tr>
<td>Lung time course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 h ($n = 4$)</td>
<td>42</td>
<td>37 (92)</td>
<td>1 (2)</td>
<td>4</td>
<td>0.0238 (0.0014-0.1006)</td>
</tr>
<tr>
<td>6 h ($n = 4$)</td>
<td>56</td>
<td>40 (72)</td>
<td>7 (13)</td>
<td>9</td>
<td>0.125 (0.0557-0.2277)</td>
</tr>
<tr>
<td>12 h ($n = 5$)</td>
<td>59</td>
<td>41 (74)</td>
<td>13 (18)</td>
<td>5</td>
<td>0.2203 (0.1278-0.3366)</td>
</tr>
<tr>
<td>24 h ($n = 3$)</td>
<td>39</td>
<td>26 (78)</td>
<td>5 (22)</td>
<td>8</td>
<td>0.1282* (0.0480-0.2556)</td>
</tr>
</tbody>
</table>

* $P = 0.0001$.

FIGURE 2. Determination of time course of cellular extravasation in early breast cancer metastasis to the liver and lung. Graphical representations of the location of the percentage of cells imaged over the time course of the experiment in the liver (A) and the lung (B). As the time point from injection to imaging gets longer, the percentage of cells that are extravascular increases in the liver, but does not change appreciably in the lung. Circles or squares, mean percent; bars, SE.

Determination of stromal cells present in micrometastatic lesions in liver

Because the majority of tumor cells in the liver had extravasated by 24 hours after tumor cell injection, we next sought to determine features of how these cells established themselves in the liver microenvironment. All imaged lesions at 5 and 12 days after tumor cell injection had extravasated and consisted principally of GFP-labeled tumor cells, but also seemed to contain a proportion of unlabeled cells of host origin [Fig. 3A and E (arrowheads)]. Immunofluorescence was performed on 5-μm sections of 5-day and 12-day livers that had previously been imaged with two-photon microscopy to determine the lineage of these cells. Our first goal was to determine if these host cells were bone marrow derived, as it is known that macrophages, neutrophils, and mast cells are very important to early tumor establishment and growth (16-18). Antibodies directed against CD45 were used to broadly identify bone marrow–derived cells, and antibodies directed against GFP were used to identify the tumor cells (Fig. 3B and F). It was
noted that although some CD45-positive cells were within a few of the early lesions (Fig. 3F, arrowhead), these CD45-positive cells were not abundant enough to account for all of the unlabeled cells within the foci. Based on these findings, we concluded that CD45-positive cells recruited from the host bone marrow did not constitute the majority of unlabeled cells within the lesions.

We next wanted to determine if the majority of unlabeled cells in the early micrometastatic lesions were endothelial cells contributing to the establishment of early vascular networks. Antibodies directed against vWF and GFP were used to label endothelial cells and tumor cells, respectively (Fig. 3C and G). Staining for vWF was also used to assess both mature vasculature and neovascularization within the 5-day and 12-day tumor foci. Tumor foci stained for vWF indicated significantly more vWF-positive vasculature in the day 12 lesions (Fig. 3G, arrowheads) than in the day 5 lesions (Fig. 3C and D). To determine if the vessels were patent, the livers of tumor-bearing mice were perfused with a complex of biotinylated lectin and streptavidin-Alexa Fluor 568 before sacrifice. Five-day tumor foci did not seem to contain any patent vessels, although in some instances they were in close proximity to patent vessels also positive for vWF (data not shown). By 12 days after tumor cell injection, the micrometastatic tumor foci contained vessels with a functional lumen (Fig. 3H, inset arrow).

Analysis of the progression of micrometastatic lesions in the liver

We next sought to track the sizes of the micrometastatic lesions at 5 and 12 days after tumor cell injection. To accomplish this, two-photon imaging was done on ex vivo explants of livers at 5 and 12 days after injection (Fig. 3A and E). Z-stacks in random areas of the liver that contained tumor cells were analyzed, and volumetric analysis was used to determine the distribution of tumor volumes. At 5 days, the majority of lesions imaged had not surpassed the volume of $2 \times 10^5 \ \mu m^3$ (Fig. 4A), with the average volume of the lesions being $9 \times 10^4 \ \mu m^3$. By 12 days, the distribution of tumor volumes had changed; a number of lesions were larger than $1 \times 10^6 \ \mu m^3$ (Fig. 4B) and the average size of the lesions increased 4-fold to $3.6 \times 10^5 \ \mu m^3$. Interestingly, however, at 12 days, the majority of micrometastatic lesions remained small (i.e., a volume of $2 \times 10^5 \ \mu m^3$ or less). Whereas the majority of lesions at

FIGURE 3. Analysis of micrometastatic lesions in the liver. A and E, two-photon micrographs of R221A-GFP tumor foci (green) in the liver at 5 d (A) and 12 d (E) after tumor cell injection. A tomato lectin-Qdot585 complex was used to label the vasculature (red). Arrowheads in E, non–GFP-labeled cells within the tumor foci. B and F, immunohistochemical staining for CD45 (red) in liver tissues containing R221A-GFP tumors (green) at 5 d (B) and 12 d (F) after tumor cell injection. Arrowhead in F, cell stained positively for CD45. Inset of F, negative control for CD45. White circles denote the tumor/stroma boundaries. C and G, immunohistochemical staining for vWF (red) in liver tissues containing R221A-GFP tumors (green) at 5 d (C) and 12 d (G) after injection of tumor cells. Note the significant vWF positivity in endothelial cells throughout the tumor foci in G (arrowheads). Inset of G, negative control for vWF. D, box plot of the vascular staining index based on vWF positivity in tumors of 5-d (42 tumors from 3 mice) and 12-d (44 tumors from 3 mice) lesions. The plots show the median and the 0.25 and 0.75 quartiles of the data. Outliers are indicated as circles. H, immunohistochemical staining for vWF (green), with the Alexa Fluor 568-lectin/streptavidin conjugate (red) marking patent vessels at the 12-d time point. Inset of H, enlargement of the outlined area, with arrow indicating containing of vWF and Alexa Fluor in a patent vessel within the tumor foci. White circles denote the tumor/stroma boundaries. Cell nuclei (blue) were marked using Hoechst in B, C, F, G, and H. Bar, 25 μm (A and E) and 50 μm (B, C, F, G, and H).
day 5 consisted of a few cells at most, by day 12 those lesions that had a larger volume seemed to consist of a small colony of cells. These data suggested that there were two subsets of lesions: a majority that remained the same size between days 5 and 12 and consisted of a few cells at most, and a subset that had the capacity to form a small micro-metastatic lesion in the liver microenvironment.

Discussion

Two-photon microscopy allows for the examination of the interaction of tumor cells with their microenvironment at the very earliest steps in metastasis. We have adapted two-photon microscopy for the \textit{ex vivo} examination of tumor cells in the liver using a whole-organ preparation that is useful for studying single cells and micrometastases \textit{in situ}. We used this system to examine the influence of different microenvironments on tumor cell extravasation. Results showed that the same tumor cell type extravasated more in the liver than in the lung. Although data analysis in the lung microenvironment was more challenging than that in the liver microenvironment due to the structure of the lung, we extensively analyzed numerous images to accurately determine the position of the tumor cells relative to the blood vessels. Multiple mice and multiple views of each mouse were used to ensure that enough data were gathered and analyzed to enable us to make well-informed determinations of the locations of the tumor cells that could then be compared using statistical analyses. These analyses provided strong evidence supporting our conclusion that extravasation times differ between the liver and the lung, with the P value for testing whether metastatic tumor cells in the liver or lung had achieved extravasation by 24 hours being 0.0001. Given this finding, the probability of observing the differences of a cell being extravascular at 24 hours between the liver and the lung by chance is <0.0001. We also show that the critical time for tumor cells to extravasate in the liver was between 12 and 24 hours after tumor cell injection, and by 5 days after tumor cell injection, all cells that we imaged had extravasated. Early metastases in the liver were heterogeneous colonies, consisting of GFP-positive tumor cells, the occasional CD45-positive bone marrow–derived cells, and vWF-positive endothelial cells. At 12 days after tumor cell injection, some lesions contained patent vasculature. Volumetric analysis of these early lesions at 5 and 12 days after tumor cell injection determined that at both time points, the majority of lesions that were imaged had a volume smaller than $2 \times 10^5 \mu m^3$.

By 12 days after injection, the distribution had changed, showing a broad range of tumor volumes. However, even the lesions with the largest volume at day 12 ($1.3 \times 10^6 \mu m^3$) did not reach the size typically associated with lesions that have reached a size limit, requiring them to undergo angiogenesis to sustain their growth (1-2 mm in diameter). These finding are important because they add to the understanding of the earliest features in the progression of breast cancer metastases in the liver.

It is well known that the site of metastasis is influenced by interactions between the tumor cells and the microenvironment at the metastatic site (19, 20). Our studies are unique in that they are the first to examine the behavior of the same breast cancer cell line in two clinically relevant metastatic sites. In addition, our studies use two-photon microscopy, which enables us to examine the location and growth of tumor cells deeper in the intact organ, unlike the previous studies that used confocal microscopy. This is particularly important for autofluorescent tissues such as the liver. These results could lead to a better understanding of early tumor/stromal interactions in the liver microenvironment and point toward the utility of using this microscopy technique for the study of early metastasis in different organ microenvironments.

Prior work that involved the study of early metastasis to the lung and liver environments has yielded differing results about cellular location after arrival in the metastatic site. In the lung microenvironment, work from the Muschel group...
has convincingly shown that both 4T1 mammary carcinoma cells and HT1080 fibrosarcoma cells injected intravenously tended to remain within the vasculature and formed intravascular colonies (7, 8). Our studies indicate that there is minimal extravasation of MMTV-PyVT- derived mammary carcinoma cells in the lung. In the liver microenvironment, tumor cell arrest in the organ and the rate of extravasation from the microvasculature seem to depend, in part, on the model system and the tumor cell line used for the studies. In two studies using intravital fluorescence microscopy with mammary and melanoma cell lines, it was found that the initial arrest of the cancer cells in the sinusoids of the liver was due to size restriction (6, 21). We noted that in some instances, our results showed that some of the tumor cells in the vessels prevented the binding of the vascular label, in agreement with the results above. However, work by Haier et al., in which intravital microscopy was done on the surface of rats after injection of colon carcinoma cells, determined that the tumor cells adhered to sinusoidal capillaries whose diameter was larger than that of the tumor cells (22). Our results suggested that this also occurred in our model, as we were able to visualize tumor cells bound to vessels with clear vascular labeling distal to the tumor cells. Our studies to determine the time course for extravasation in the liver microenvironment determined that tumor cell extravasation occurs continually, with the majority of the breast tumor cells in the liver having extravasated at 24 hours after injection. The difference in extravasation in these two organs could simply be a consequence of the differences in the architecture of the vasculature of the liver and lung. The liver contains a fenestrated endothelium that controls microvascular exchange, which is not seen in the lung and could affect the ability of cells to transmigrate from the vessels to the stroma of the liver (23). Alternatively, our observed results may denote differences in interactions between the tumor cells and the host cells of the respective microenvironments. Elucidating these mechanisms and the differences in liver and lung extravasation is the subject of ongoing work.

Our studies also determined that the majority of early metastatic foci formed in the liver consisted of only a few cells even at 12 days after tumor cell injection (Fig. 4B). There was also a subset of foci that showed a broad distribution in size. Recent work by Qian et al. (24) has shown that stromal cues, at least in the lung microenvironment, are provided by CD11b+Gr1− macrophages that enhance metastatic extravasation, survival, and outgrowth. Although we did not test for specific markers of macrophage subsets in our studies, we noted that there were CD45+ bone marrow–derived cells within a small subset of the micrometastatic lesions 12 days after tumor cell injection (Fig. 3F). Although few in number, these accompanying CD45+ cells could contribute to the outgrowth of these lesions by providing a permissive microenvironment for the tumor cells. Importantly, a subset of lesions imaged at day 12 seemed to contain functional vessels (Fig. 3G and H). Additionally, the vascular staining index was significantly higher in the 12-day lesions as compared with the 5-day lesions, although the size of the lesions was smaller than that typically associated with angiogenesis (25). We noted that, in general, as tumor size increased, the vascular staining index also increased. This would suggest that those lesions that could use an existent patent blood supply early in their development were able to thrive in the liver microenvironment, whereas the majority of lesions that did not use a blood supply remained dormant in the liver. However, there were some outliers that either were large and did not contain many vessels or were small and contained a significant amount of vessels (data not shown). These results showed some of the spatial heterogeneity of the vascular network that has been previously described in tumors (26-28).

In summary, our studies developed a method for the analysis of the location and outgrowth of breast cancer cells in both the liver and the lung microenvironments using two-photon microscopy, and determined that these cells extravasated more in the liver compared with the lung microenvironment. Our findings present evidence that the location of the tumor cells, once they reach the metastatic site, is dependent on a variety of both tumor and microenvironmental factors. Of the tumor cells that extravasated into the liver parenchyma, only a subset were able to develop into micrometastatic lesions by 12 days after tumor cell injection, and these lesions contained patent vasculature. This suggests that the acquisition of a functional vasculature is a rare event but may be essential for early metastatic tumor establishment in the liver microenvironment, as proposed by Folkman and colleagues (29). These observations may affect therapy for breast cancer patients in the future. Whereas a proportion of patients in the clinic present with well-defined metastases, others have no evidence of metastatic lesions but have a high risk of developing metastases from existing lesions that are below the limits of detection of current imaging modalities. Improved knowledge of the patterns of micrometastatic establishment in specific microenvironments would provide the possibility of targeting therapy in the future to interfere with specific early steps of metastasis.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank the laboratory of Ruth Muschel M.D., Ph.D., for generous help in early discussions and training related to multiphoton microscopy. We also thank Alessandro Ustione who was involved in the development of the imaging technique.

Grant Support

NIH grants R03DK078711 and K08DK70708-01 (D.L. Gorden), R01CA084360 (L.M. Matrisian), P20GM72048 (D.W. Piston), and R25CA092043 (M.D. Martin). Experiments were performed in part through the use of the VUMC Cell Imaging Shared Resource (supported by NIH grants CA68648, DK20593, DK58404, HD15052, DK59637, and EY08126). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 12/20/2009; revised 07/23/2010; accepted 08/11/2010; published OnlineFirst 08/19/2010.
References

Molecular Cancer Research

Rapid Extravasation and Establishment of Breast Cancer Micrometastases in the Liver Microenvironment

Mol Cancer Res 2010;8:1319-1327. Published OnlineFirst August 19, 2010.

Updated version

Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-09-0551

Cited articles

This article cites 29 articles, 2 of which you can access for free at:
http://mcr.aacrjournals.org/content/8/10/1319.full.html#ref-list-1

Citing articles

This article has been cited by 3 HighWire-hosted articles. Access the articles at:
/content/8/10/1319.full.html#related-urls

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.