Requirement of Phosphatidylinositol(3,4,5)Trisphosphate in Phosphatidylinositol 3-Kinase-Induced Oncogenic Transformation

Adam Denley,1 Marco Gymnopoulous,1 Sohye Kang,2 Christina Mitchell,3 and Peter K. Vogt1

1Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California; 2Amgen, Thousand Oaks, California; and 3Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia

Abstract
Phosphatidylinositol 3-kinases (PI3K) are divided into three classes, which differ in their substrates and products. Class I generates the inositol phospholipids PI(3)P, PI(3,4)P2, and PI(3,4,5)P3 referred as PIP, PIP2, and PIP3, respectively. Class II produces PIP and PIP2, and class III generates only PIP. Substrate and product differences of the three classes are determined by the activation loops of their catalytic domains. Substitution of the class I activation loop with either class II or II activation loop results in a corresponding change of substrate preference and product restriction. We have evaluated such activation loop substitutions to show that oncogenic activity of class I PI3K is linked to the ability to produce PIP3. We further show that reduction of cellular PIP3 levels by the 5′-phosphatase PIPP interferes with PI3K-induced oncogenic transformation. PIPP also attenuates signaling through Akt and target of rapamycin. Class III PI3K fails to induce oncogenic transformation. Likewise, a constitutively membrane-bound class I PI3K mutant retaining only the protein kinase is unable to induce transformation. We conclude that PIP3 is an essential component of PI3K-mediated oncogenesis and that inability to generate PIP3 abolishes oncogenic potential.

Introduction
The family of phosphatidylinositol 3-kinases (PI3K) is grouped into three distinct classes based on lipid substrate specificity and mode of regulation (1). Class I PI3Ks can use the nonphosphorylated phosphatidylinositol (PI) and the monophosphate [PI(4)P] and the bisphosphate [PI(4,5)P2] phosphatidylinositols as substrates, giving rise to PI(3)P, PI(3,4)P2, and PI (3,4,5)P3, which will be referred to as PIP, PIP2, and PIP3, respectively. Class II PI3Ks use PI and PI(4)P as substrates to produce PIP and PIP2, respectively. Class III PI3Ks, however, can only use PI and convert it to PIP. In addition, class I PI3Ks have the capacity to catalyze the addition of a phosphate group to serine residues in proteins (2, 3). The protein substrates include MEK1 (4), the PI3K subunits p85 and p110, and tropomyosin (5). Structural similarities also place some protein kinases close to PI3K [PI3K-related kinases; e.g., target of rapamycin (TOR)].

In the PI3K pathway, signaling molecules downstream of PI3K, such as phosphoinositide-dependent kinase (PDK-1) and Akt (murine thymoma viral oncoprotein homologue), bind PIP2 and PIP3 with near equal affinity (6). The binding of these signaling molecules provides a mechanism for their recruitment to the plasma membrane and allows PDK-1 to phosphorylate Akt. Phosphorylation of Akt by PDK-1 enhances the kinase activity of Akt and results in the phosphorylation of downstream targets (7). The crystal structure of the pleckstrin homology domain of Akt in complex PIP3 reveals significant ionic interactions between basic pleckstrin homology domain residues and the phosphates at the D3 and D4 positions of PI (6, 8, 9). No binding occurs between the pleckstrin homology domain and the phosphate at the D5 position, providing a structural basis for the lower binding affinity of Akt for PI(4,5)P2.

The phosphorylation of lipids by PI3K is antagonized by the phosphatase PTEN (phosphatase and tensin homologue), which removes the phosphate group from the D3 position of the inositol ring of PIP3 (10). PTEN negatively regulates the biological function of PI3K and inhibits the activation of signaling molecules downstream of PI3K (11). In cancer cells with loss-of-function mutations of PTEN, levels of PIP3 are increased (12), and Akt and its downstream targets show enhanced activation (12). Lipid phosphatases that remove the phosphate group from the D5 position of the inositol ring, including SHIP (Src homology 2-containing inositol 5′-phosphatase) (13), SHIP2 (Src homology 2-containing inositol 5′-phosphatase 2) (14), and PIPP (proline-rich inositol polyphosphate 5-phosphatase) (15), also attenuate PI3K signaling (15-17). The fact that these phosphatases reduce Akt activation and signaling suggests that PIP3 may be a critical mediator of PI3K signaling.

Here, we show that PIP3 is required for the transforming properties of all oncogenic PI3Ks. We also show that class III PI3K, which can only produce PIP, cannot transform cells. In addition, the protein kinase activity of the γ isoform of class I PI3K by itself is insufficient to cause oncogenic transformation.

Received 2/19/09; revised 3/26/09; accepted 4/8/09; published OnlineFirst 7/7/09.

Grant support: National Cancer Institute.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

For reprints contact: Peter K. Vogt, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037. Phone: 858-784-9728; Fax: 858-784-2070. E-mail: pkvogt@scripps.edu

Copyright © 2009 American Association for Cancer Research. Published OnlineFirst July 7, 2009; DOI: 10.1158/1541-7786.MCR-09-0068

DOI: 10.1158/1541-7786.MCR-09-0068
Results

Transformation by All Class I PI3Ks Requires Production of PIP3

Previous studies from our laboratory showed that lipid kinase activity was required for transformation by p110α and by the H1047R mutant of p110α (18). As PI3K produces several lipid products, we sought to identify the phospholipids that mediate the oncogenic signal of PI3K. We substituted a short sequence of the activation loop within the kinase domain of p110γ with the corresponding representative sequence from class II PI3K (PI3KC2α), class III PI3K (Vps34p), and the PI3K-related kinase, TOR, here called class IV (3, 4). This substitution changes the lipid substrate specificity and the subsequent lipid product specificity. Only the wild-type class I protein can produce PIP3 along with PIP2 and PIP (4). p110γ with the class II substitution can only produce PIP2 and PIP, whereas p110γ with the class III substitution can only produce PIP (4). These p110γ hybrids were expressed with the RCAS (avian retroviral vector replication-competent leukemia virus with splice acceptor) vector in chicken embryo fibroblasts (CEF). Of all the constructs evaluated, only the wild-type p110γ induced focus formation (Fig. 1A). Expression of wild-type p110γ and of the myristylated, constitutively active p110γ induced phosphorylation of Akt at both Ser473 and Thr308 (Fig. 1B). Expression of p110γ with the class II substitution caused a slight increase in Akt phosphorylation at Ser473, but no phosphorylation was detected at Thr308. Neither class III nor class IV substitutions of p110γ induced significant phosphorylation of Akt at Ser473 or Thr308 over background levels. All hybrid proteins were expressed at similar levels (Fig. 1B). These observations suggest that PIP3 is required for oncogenic transformation. However, it is not known whether PIP3 alone is sufficient for transformation or whether PIP2 is also essential.

To confirm that PIP3 is an indispensable component of the oncogenic signal of all class I PI3K isoforms, the effect of the 5′-phosphatase PIPP on transformation was studied (15). PIPP is a lipid phosphatase that dephosphorylates inositol lipids at the D5 position of the inositol head group of either PIP3 or PIP(4,5)P2 and consequently has been shown to reduce the level of PIP3 at the plasma membrane (15). Expression of PIPP or of the related 5′-phosphatase, SHIP, reduces the level of Akt phosphorylation at Ser473 (15, 19). The catalytic subunits of class I PI3K, p110β, p110γ, and p110δ, and the H1047R mutant of p110α were expressed in CEF along with PIPP or vector alone. PIPP significantly reduced the number of foci formed by all p110 isoforms but had no effect on focus formation by the v-Jun oncoprotein, which was used as control (Fig. 2A). The expression of PIPP resulted in some reduction in the levels of Myc-P3K and of p110α H1047R but did not significantly affect the levels of p110β, p110γ, or p110δ (Fig. 2B). Although we cannot rule out that the reduced abundance of Myc-P3K and of p110α H1047R contributed to lower focus counts, we consider this possibility unlikely because, even at these reduced expression levels, Myc-P3K and p110α H1047R were efficient focus formers in control experiments.

The level of Akt phosphorylation at Thr308 and Ser473 mediated by all PI3K isoforms was also reduced in CEF expressing PIPP (Fig. 2C). As a measure of Akt activity, we determined the levels of the Akt substrates in PIPP-transfected CEF. FoxO1 (forkhead box O transcription factor) is a transcriptional regulator that controls the expression of several genes involved in cell proliferation including p21Cip1 (20) and cyclin D2 (21). FoxO1 is phosphorylated on Thr24 and Ser256 by Akt, which then results in the nuclear exclusion and proteolytic degradation of FoxO1 (22, 23). In CEF transformed by PI3K or Akt, FoxO1 is undetectable (24). Expression of PIPP attenuated the degradation of FoxO1 induced by oncogenic PI3K.

The transformation by class I PI3K isoforms is sensitive to inhibition by rapamycin, suggesting that the activity of the TOR kinase is essential for transformation (18). We analyzed the phosphorylation state of two substrates of TOR that are involved in translational control: p70 S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1). p70 S6 kinase is phosphorylated by TOR on Thr389, and this activation is required for the phosphorylation ribosomal protein S6 by p70 S6 kinase (25). 4E-BP1 binds to eukaryotic initiation factor 4E and thereby prevents assembly of the cap-binding complex that initiates translation of mRNAs. 4E-BP1 is phosphorylated by TOR on Ser65, and this phosphorylation releases eukaryotic initiation factor 4E from 4E-BP1, allowing assembly of the initiation complex (26). Expression of PIPP reduced the phosphorylation of both p70 S6 kinase and 4E-BP1. This observation suggests that reduced levels of PIP3 result in lower activity of TOR. To control for a possible effect of PIPP downstream of Akt or directly on Akt itself, we repeated the above analysis with constitutively active, myristylated Akt (Myc-Akt). PIPP expression did not affect Myr-Akt expression or signaling. We conclude that the effect of PIPP on PI3K signaling is due to a reduction in the levels of PIP3. In the absence of a myristylation signal, Akt depends on PIP3 for activation, which in turn mediates the oncogenic signaling of PI3K.

Activation Loop Does Not Determine Oncogenicity

The activation loop of the catalytic domain of PI3K is critical in determining lipid substrate specificity and overall activity. In an effort to determine whether the activation loop defines the different oncogenic potencies of the class I PI3K isoforms, we replaced the activation loop of the wild-type p110α with the activation loop of p110δ or p110γ. Wild-type p110α is not oncogenic and does not transform CEF, whereas both p110δ and p110γ potently induce focus formation in CEF (18). p110α with the activation loop of p110δ (p110α-δ) and p110α with the activation loop of p110γ (p110α-γ) did not acquire the ability to transform CEF and in this respect behaved like wild-type p110α (Fig. 3). In addition, the lipid kinase activity of p110α-δ and p110α-γ was similar to wild-type p110α (Supplementary Fig. S1). These data show that oncogenic activity inherent in the wild-type non-α isoforms of class I p110 cannot be transferred solely with the activation loop.

Protein Kinase Activity Is Not Sufficient for Activation of Akt or for Transformation

All class I p110 isoforms exhibit intrinsic protein serine kinase activity as well as lipid kinase activity. p110γ autophosphorylates and phosphorylates several other proteins including the PI3K regulatory subunit p85, MEK1 (4), and...
nonmuscle tropomyosin (5). Mutants of p110α H1047R and p110γ that retain only the ability to phosphorylate proteins (lipid kinase inactive) cannot induce transformation in CEF (18). As myristylation increases the oncogenicity of p110γ and p110β and renders these proteins to constitutively activate Akt and several substrates downstream of Akt, a myristylated protein kinase-only version of p110γ was produced. This construct did not induce focus formation in CEF and did not activate Akt phosphorylation (data not shown). Therefore, the protein kinase activity alone cannot mediate the oncogenic properties of PI3K, even when p110 is constitutively localized to the membrane.

Class III PI3K, hVps34, Does Not Cause Oncogenic Transformation

hVps34 is the human homologue of yeast Vps34p and the only member of class III PI3K in mammals (27). hVps34 can use PI in a phosphorylation reaction to produce PIP (27). We cloned hVps34 into the RCAS expression vector and transfected the construct into CEF. Focus formation was not observed in CEF expressing either wild-type or a myristylated form of hVps34 (Fig. 4A). Expression of the wild-type or the myristylated form of hVps34 did not increase the phosphorylation status of Akt, p70 S6 kinase, 4E-BP1, and glycogen synthase kinase-3β or cause a change in the level of FoxO1 (Fig. 4B). The signaling of hVps34 did not change in the presence or absence of serum. Both the wild-type and the myristylated Vps34 exhibited the ability to phosphorylate PI in an in vitro lipid kinase assay (Supplementary Fig. S1).

Discussion

The three classes PI3Ks are characterized by the specific sets of phospholipids, which they can use as substrates. Consequently, each class of PI3K generates a characteristic set of products, dictated by substrate preferences. There are three PI products with a phosphate at the D3 position, PIP, PIP2, and PIP3. Here, we present evidence suggesting that PIP3 is an essential component of the oncogenic signal that originates in PI3K. It is not known, however, whether PIP3 is the only PI3K product required for oncogenicity. A possible participation of PIP2 and PIP cannot be excluded based on the available data, but these latter products of PI3K are clearly not sufficient for oncogenicity.

The activation loop hybrids of p110γ with the ability to produce a restricted set of phospholipids link oncogenic activity to the ability to produce PIP3. The PIPP phosphatase, which reduces intracellular levels of PIP3, effectively interferes with the PI3K-induced oncogenic transformation but fails to affect an oncogenic signal that is not dependent on the PI3K-Akt pathway.

The phospholipid products of PI3K recruit Akt and its activating kinase PDK-1, allowing PDK-1 to phosphorylate Akt on Thr308. PDK-1 and Akt bind to PIP3 with high affinity. Both also bind to PI(4,5)P2, but weakly, suggesting that the most efficient activation of Akt is mediated by PIP3 (28, 29). Our results suggest that phosphorylation of Akt on both Thr308 and Ser473 is dependent on PIP3.

It is conceivable that other proteins, which preferentially bind PIP3 over PIP2, are involved in PI3K-induced oncogenic transformation. Some of these PIP3-binding proteins are the tyrosine kinase Btk (Bruton’s tyrosine kinase; 30), the cytohesin 2 and GRP1 (general receptor for phosphoinositides 1) guanine triphosphate exchange factors (31), and the Sos (son of sevenless) and Gab1 (Grb2 associated binder) adaptor proteins (32). The tyrosine kinase Btk has been shown to cause oncogenic transformation by acquiring gain-of-function mutations (33, 34). In addition, Btk appears to be a target of the BCR-Abl fusion protein, as inhibition of Btk by a small-molecule inhibitor induces apoptosis of BCR-Abl-expressing leukemia cells as effectively as inhibition of BCR-Abl itself (35). The oncprotein

FIGURE 1. Transformation and PI3K/Akt signaling by class I PI3Kγ requires production of PIP3. A. Cellular transformation. Indicated constructs were transfected into CEF as stated in Materials and Methods. Cells were overlaid with nutrient agar for 14 d before staining with crystal violet. RCAS(A) is shown as negative control. B. Analysis of Akt phosphorylation in cells transfected with the indicated constructs. Antibodies used were phospho-Akt (p-Akt) either Ser473 or Thr308, total Akt (Akt), and VSV-G for tagged proteins.
Ras can be activated by Shc (Src homology 2 domain containing protein) via the adaptors Sos and Gab1, which has revealed these adaptors as novel targets for anticancer therapy (36). Possible roles of these PIP3-binding proteins in PI3K signaling remain to be explored.

The central role of PIP3 in PI3K-induced oncogenic transformation is also reflected by the elevated levels of PIP3 seen in many cancers. This fact highlights the potential tumor suppressor nature of 5'-phosphatases and suggests that loss-of-function mutations or down-regulation of these phosphatases may be a marker of increased PI3K signaling in tumors. This suggestion is supported by the finding that another 5'-phosphatase, SHIP, is inactivated in adult T-cell leukemia, which displays high levels of phosphorylated Akt (37). Our results with PIPP are in accord with previous work, which shows that the 5'-phosphatases SHIP-1 and SHIP-2 can attenuate Akt signaling (38).

Our studies failed to detect an oncogenic potential in class III PI3K. Class III PI3K is represented by one protein in humans, hVps34. This homologue of the yeast enzyme Vps34p can only use PI to produce PIP (39). One of the physiologic roles of hVps34 is to regulate trafficking of lysosomal enzymes through the trans-Golgi network (40). PIP interacts with FYVE

FIGURE 2. Expression of PIPP interferes with cellular transformation and Akt signaling of class I PI3Ks. A, Cellular transformation assay. Indicated constructs were transfected into CEF either with or without PIPP, and cells were overlaid with nutrient agar for 14 d before staining with crystal violet. RCAS(A) and v-jun-transfected CEF are shown as controls. B, Expression of PIPP does not affect the expression of class I PI3K isoforms. The expression levels of indicated constructs were analyzed with either isoform-specific antibodies (p110α, p110β, and p110δ) or against the VSV tag (p110γ). PIPP was detected with HA antibody. C, PIPP interferes with PI3K/Akt signaling. Downstream targets of PI3K show reduced phosphorylation when cotransfected with PIPP and FoxO protein degradation is attenuated.
domains of proteins (41), and our results suggest that FYVE domain-containing proteins are not sufficient for oncogenic transformation.

Our results document an essential role of PIP3 in the oncogenic functions of PI3Ks.

Materials and Methods

Plasmid Construction

All wild-type and myristylated class I PI3K isoforms constructs were described previously (18). p110γ constructs with replaced catalytic core of class II, III, and IV enzymes as well as p110α-δ and p110α-γ hybrid constructs are designed as described in ref. 4.

All PI3K, hVps34 coding sequences were ultimately cloned into the avian retroviral vector RCAS.Sfi, a modified version of RCAS (42).

PI3K Assay

In vitro PI3K activity was analyzed as described (43), with minor modifications. The immune complexes were prepared by incubating 400 μg protein with 5 μL anti-p110α antibody for 2 h at 4°C followed by 2 h of incubation with protein A-agarose. The beads were washed three times with lysis buffer and twice with TNE [10 mmol/L Tris (pH 7.5), 100 mmol/L NaCl, 1 mmol/L EDTA]. Subsequently, the immune complexes were incubated with 50 μL kinase reaction buffer containing 20 mmol/L HEPES (pH 7.5), 10 mmol/L MgCl2, 200 μg/mL PI (sonicated), 60 μmol/L ATP, and 200 μCi/mL (1 Ci/37 GBq) [γ-32P]ATP for 5 min at room temperature. The reaction was terminated by adding 80 μL of 1 N HCl, and the phosphorylated lipids were extracted with 160 μL chloroform/methanol (1:1). Samples were dried down and dissolved in chloroform and spotted onto Silica Gel 60 TLC plates (EMD). The plates were developed in a borate buffer system (44) and visualized by autoradiography.

Cell Culture

Primary cultures of CEF were prepared from white leghorn embryos purchased from Charles River Breeding Laboratories. Each transfection with DNA or infection with avian retrovirus was done with newly prepared CEF. CEF were routinely cultured in F-10.

Focus Assays

For focus assays, CEF were infected with RCAS virus containing the relevant oncogene as described previously (45). Cells were fed nutrient agar every other day and then stained with crystal violet to visualize the foci of transformed cells. Inhibitors were prepared in 100% DMSO and added at

FIGURE 3. Activation loop of class I PI3Ks is not a sufficient determinant of oncogenicity. A, Cellular transformation assay with wild-type PI3K isoforms (α, δ, and γ) and hybrid p110α-δ and p110α-γ. RCAS (A) and wild-type p110α are shown as negative controls. B, PI3K/Akt signaling in transfected cells with hybrid constructs show the same phosphorylation status as wild-type p110α.
the desired concentration to the nutrient agar overlays. An equivalent amount of 100% DMSO was added to cells as a control.

Interference of PIPP with Oncogenic Transformation

Cells were transfected with different RCAS vectors expressing PIPP and oncogenic p110 constructs. PIPP was expressed by RCAS carrying the subgroup B envelope protein [RCAS (B)] and the p110 proteins were expressed with RCAS carrying the subgroup A envelope protein [RCAS(A)]. For efficient expression of two proteins in the same cell, it is essential to use RCAS vectors with different envelope proteins to avoid competition for the same cell surface receptor. A v-jun-expressing vector was used as a control.

Western Analysis

Cell lysates were prepared from CEF that had been transfected with DNA using the DMSO/polybrene method (46). For serum starvation, subconfluent cultures were kept in Ham’s F-10 medium with 0.5% FCS and 0.1% chicken serum for 40 h before 2 h of starvation in Ham’s F-10 medium alone. Inhibitors or DMSO were added at the appropriate concentration during the final 2 h in serum-free Ham’s F-10 medium. Western blotting was done as described previously in refs. 18, 43, 47.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

13. Damen JE, Liu L, Rosten P, et al. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidyl-

15. Ooms LM, Fedele CG, Astle MV, et al. The inositol polyphosphate 5-phos-

16. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phos-

17. Sasaoka T, Rose DW, Jhun BH, Saltiel AR, Draznin B, Olefsky JM. Evi-

20. Sasakawa T, Rose DW, Jhun BH, Altirol AR. Draznin B, Olefsky JM. Evi-

25. Hendricks RW, Kersseboom R. Involvement of SLP-65 and Btk in tumor sup-

29. Stokoe D, Stephens LR, Copeland T, et al. Dual role of phosphatidylinositol-

31. Fuguesson KM, Kavan JM, Sankaran VG, et al. Structural basis for discrimi-

35. Hendricks RW, Kersseboom R. Involvement of SLP-65 and Btk in tumor sup-

46. Kawai S, Nishizawa M. New procedure for DNA transfection with polyca-

Molecular Cancer Research

Requirement of Phosphatidylinositol(3,4,5)Trisphosphate in Phosphatidylinositol 3-Kinase-Induced Oncogenic Transformation

Adam Denley, Marco Gymnopoulos, Sohye Kang, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-09-0068

Supplementary Material
Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2009/07/10/1541-7786.MCR-09-0068.DC1

Cited articles
This article cites 47 articles, 27 of which you can access for free at:
http://mcr.aacrjournals.org/content/7/7/1132.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/7/7/1132.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.