Impairment of APE1 Function Enhances Cellular Sensitivity to Clinically Relevant Alkylators and Antimetabolites

Daniel R. McNeill,1 Wing Lam,3 Theodore L. DeWeese,2 Yung-Chi Cheng,3 and David M. Wilson III 1

1Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH; 2Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland; and 3Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut

Abstract

Base excision repair (BER) is the major pathway for removing mutagenic and cytotoxic oxidative and alkylation DNA modifications. Using a catalytically inactive, dominant negative protein form of human APE1, termed ED, which binds with high affinity to substrate DNA and blocks subsequent repair steps, we assessed the role of BER in mediating cellular resistance to clinically relevant alkylating drugs and antimetabolites. Colony formation assays revealed that ED expression enhanced cellular sensitivity to melphalan not at all; to 6-mercaptopurine, thiopeta, busulfan, and carmustine moderately (1.2- to 2.4-fold); and to streptozotocin and temozolomide significantly (2.0- to 5.3-fold). The effectiveness of ED to promote enhanced cytotoxicity generally correlated with the agent’s (a) monofunctional nature, (b) capacity to induce N2-guanine and N7-adenine modifications, and (c) inability to generate O6-guanine adducts or DNA cross-links. ED also enhanced the cell killing potency of the antimetabolite troxacinabine, apparently by blocking the processing of DNA strand breaks, yet had no effect on the cytotoxicity of gemcitabine, results that agree well with the known efficiency of APE1 to excise these nucleoside analogues from DNA. Most impressively, ED expression produced an ∼5- and 25-fold augmentation of the cell killing effect of 5-fluorouracil and 5-fluorodeoxyuridine, respectively, implicating BER in the cellular response to such antimetabolites; the increased 5-fluorouracil sensitivity was associated with an accumulation of abscisic sites and active caspase–positive staining. Our data suggest that APE1, and BER more broadly, is a potential target for inactivation in anticancer treatment paradigms that involve select alkylating agents or antimetabolites.

Introduction

To cope with the deleterious consequences of endogenous and exogenous DNA-damaging agents, cells have evolved repair systems that maintain genome integrity (1). Defects in DNA repair processes are linked to genomic instability syndromes and cancer predisposition. A significant yet evolutionarily unintended role for DNA repair is its involvement in influencing cellular resistance to anticancer agents (2, 3). In particular, most drugs used to eradicate neoplastic disease operate by inducing the formation of complex DNA lesions that ultimately prevent replication and activate cell death responses. The best established demonstration of a role of DNA repair in mitigating therapeutic agent responsiveness is with O6-methyl-guanine DNA methyltransferase (MGMT), which plays a prominent part in adduct repair that limits the cytotoxic effect of clinical alkylating (methylating or chloroethylating) agents (4).

Most agents used to treat cancer fall into the following major categories: antimetabolites, DNA-interactive drugs (e.g., alkylators, cross-linking agents, intercalating agents, topoisomerase inhibitors, and DNA cleaving agents), antitubulin agents, molecularly targeted drugs, hormonal therapies, tumor-targeting strategies, and biological agents (5). Relevant to the studies herein are the alkylating compounds and the antimetabolites. Alkylating agents represent the earliest of anticancer therapies and have great utility in both hematologic and solid tumor malignancies. The most common of the alkylating agents used in clinical practice include nitrogen mustards, nitrosoureas, platinum complexes, methanesulfonate esters, and aziridines. These compounds, or their active metabolites, react with a range of nucleophilic targets, particularly in DNA, to form covalent intermediates that induce cell death (6, 7).

Antimetabolites account for nearly one fifth of all drugs currently approved by the Food and Drug Administration for the treatment of cancer. These compounds, which are structural analogues of natural compounds, are used primarily in the treatment of hematologic malignancies, although some of the more recently developed agents have shown activity against solid tumors. The majority of antimetabolites are analogues of purines or pyrimidines and must be activated by cellular enzymes to nucleotide metabolites, which are incorporated into DNA and/or are direct inhibitors of enzymes required for DNA synthesis, such as DNA polymerases or thymidylate synthase (8). Regardless, nucleoside analogues interfere with normal chromosome replication and thus inhibit cell growth.

Whereas DNA-interactive drugs typically exploit the high replicative capacity of cancerous cells, actively dividing normal cells (e.g., bone marrow) are also susceptible to the toxic effects...
of these compounds. Thus, a primary goal of current investigations is to devise combinatorial treatment methods that (a) protect normal cells from and (b) enhance the sensitivity of tumor cells to the toxicity of anticancer agents. As noted above, DNA repair systems represent a major protective mechanism against the cytotoxic effects of clinical DNA–interactive drugs (3). Besides MGMT, base excision repair (BER) is another prominent system that eliminates potentially lethal base damage introduced by alkylating agents (6, 7). In addition, 3′ to 5′ DNA exonucleases, which have the capacity to excise chain-terminating nucleoside analogues that have been incorporated into DNA, can determine the efficacy of antimetabolites (9). Strategies for these repair mechanisms would therefore improve the selectivity and effectiveness of specific anticancer treatment paradigms.

Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is the major enzyme responsible for the repair of abasic sites in DNA (10). AP sites are common intermediates of alkylating damage to DNA, arising either via spontaneous base loss or through base release by a DNA repair glycosylase. APE1 initiates repair of AP sites by incising the phosphodiester backbone immediately 5′ to the lesion, creating a single-strand break intermediate that is further processed by proteins of the BER pathway. In addition to its AP site incision activity, APE1 also possesses a 3′ to 5′ exonucleolytic function that operates on 3′-obstructive termini, such as mismatched nucleotides, tyrosyl groups, phosphate or phosphoglycolate residues, and certain chain-terminating nucleoside analogues (11–15). Indeed, past studies using antisense, RNAi, or small molecule inhibitor strategies have revealed that APE1-deficient cells exhibit hypersensitivity to a number of “DNA-damaging” agents, including the laboratory agents methyl methanesulfonate (MMS), hydroxyurea, mitomycin C, and paraquat, and anticancer agents such as ionizing radiation, thiotepa, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU; also known as carmustine), temozolomide, gemcitabine, and the nucleoside analogue β-l-dioxolane-cytidine (1-odDC; also known as troxacinabine; refs. 16-23). Thus, APE1 represents a sensible target for improved responsiveness to certain therapeutic strategies (24).

Previous work from our laboratory characterized a dominant-negative form of APE1, termed ED, which exhibits a >5.6 × 10^3-fold reduced AP site incision capacity, but a >10-fold higher binding affinity for substrate DNA (25). This protein was designed strategically to harbor mutations at the catalytic active site residues Glu96 and Asp210, which normally would repel the similarly charged phosphodiester backbone. Significantly, expression of ED in both Chinese hamster ovary (CHO) cells and the human cancer cell line NCI-H1299 was shown to increase cellular sensitivity to the laboratory agent MMS and the chemotherapeutic agents BCNU and dideoxycytidine (ddC; also known as zalcitabine); ED had no effect on the cytotoxic effects of the radiomimetic bleomycin, the nucleoside analogue β-D-arabinofuranosylcytosine (araC; also known as cytarabine), the topoisomerase inhibitors camptothecin and etoposide, or the cross-linking agents mitomycin C and cisplatin (25). Using ED as a tool, we further explored the role of APE1 and BER in the survival response to a wide range of clinical alkylating agents and antimetabolites.

Results

Effect of ED on Cellular Sensitivity to S_N1 and S_N2 Alkylating Agents

Alkylating agents are generally divided into two types based on their reaction mechanism: S_N1 or S_N2 (6, 7). S_N2 type, because they have direct biomolecular reaction with DNA, exhibit high nucleophilic selectivity, and alkylate almost exclusively the highly nucleophilic nitrogen centers in DNA, producing primarily N^2-alkylguanine, less amounts of N^3-alkyladenine, and only small amounts of O-adducted lesions, such as O^2-alkylguanine. S_N1-type alkylating agents modify DNA via the intermediate methylidiazonium ion. Because of its high electrophilic reactivity, this intermediate has relatively low selectivity, and therefore modifies not only the highly nucleophilic nitrogen atoms but also the less nucleophilic oxygen atoms to generate significant, albeit less, amounts of O-alkylated nucleotides, such as O^3-alkylguanine, O^3-alkylthymine, and O^2-alkylcytosine, as well as alkylphosphates.

We had previously shown that ED expression increases by 4.8- to 6.3-fold cellular sensitivity to the S_N2-type alkylating agent MMS, and concurrently leads to a hyperaccumulation of chromosomal AP sites (25). MMS has been routinely used as a classic BER-type DNA-damaging agent because it creates primarily the base lesions N^4-methylguanine and N^6-methylguanine, which are either lost spontaneously due to the increased instability of the N-glycosidic bond or removed as substrates of DNA repair glycosylases (6, 7). We explored here the effect of ED on colony formation ability following treatment with two additional laboratory alkylators: the S_N1-type methylating agent N-methyl-N-nitrosourea (MNU) and the S_N1/S_N2-type ethylating agent ethyl methansulfonate (EMS). Using the previously designed high (ED8), medium (ED5), and low (ED6) ED-expressing CHO clones (25), as well as a parental T-REx control cell line, we found that ED production had a 1.2- to 2.9-fold enhancement of the cell killing effect of MNU, but had a marginal ~1.2-fold effect on EMS cytotoxicity (Fig. 1). The range for the fold increase in sensitivity was derived by determining the fold difference between the LD_{50,s} (i.e., the dose at which 50% cell killing is attained) of the low ED-expressing line (ED6, which represents for all practical purposes a vector control) and the medium ED-expressing line (ED5; i.e., the low end of the range), and the difference between the LD_{50,s} of the high ED-expressing line (ED8) and the T-REx control (i.e., the high end of the range).

Effect of ED on Clinically Relevant Alkylating Agent Sensitivity

We next used the ED-expressing CHO cell lines as a tool to interrogate the role of APE1 (and BER) in clinically relevant alkylating agent resistance, examining specifically the effect of ED on cellular sensitivity to streptozotocin, temozolomide, dacarbazine, busulfan, melphalan, and thiotepa. These agents are frequently used in the treatment of a range of malignancies and span the various subclassifications of therapeutic alkylating compounds (Table 1). Previous work by our group found that ED expression increased the cell killing potency of carmustine/
Role of APE1 in Anticancer Agent Resistance

BCNU, a drug most commonly used in the management of brain tumors, by 1.4- to 2.2-fold (25). Figure 2 shows the colony formation assays for each of the alkylating agents above, and Table 1 summarizes the quantitative effects of ED on cell survival with all alkylators tested herein. In short, ED had little effect on sensitivity to melphanal, an intermediate effect, albeit variable, with decarbazine, thiopeta, busulfan and carmustine (1.2- to 2.4-fold), and a pronounced effect with streptozotocin and decarbazine. (25). Figure 2 shows the colony formation assay with EMS. The different CHO cell lines were handled and processed as above, except EMS was used as the cytotoxic agent. Points, average of six data points from three independent experimental runs; bars, SD. Any apparent missing error bars represent SDs of <4%.

Effect of ED on Sensitivity to Chain-Terminating Nucleoside Analogue

Our prior studies showed that ED production in CHO cells and the human non-small cell lung cancer line NCI-H1299 increased sensitivity to the nucleoside analogue zalcitabine, but not to the antimetabolite cytarabine (25). This finding is consistent with the known biochemical properties of APE1, where zalcitabine/ddC is a more favorable substrate for the 3’ to 5’ exonuclease function of APE1 than cytarabine/araC (15). We determined here the effects of ED on the cellular sensitivity to the chain-terminating nucleoside analogues troxactitabine and gemcitabine. Troxactitabine (or 1-oddC) is an t-stereoisomeric analogue that is an excellent substrate for APE1 excision activity (15). Gemcitabine is a cytidine analogue that exerts its cytotoxicity, in part, through inhibition of DNA synthesis and is a poor substrate for APE1 exonuclease activity. Impairment of endogenous APE1 function by ED expression resulted in a profound 2- to 3-fold increase in sensitivity to troxactitabine (Fig. 3B), but had no effect on cell killing by gemcitabine (Fig. 3A), reflective of the excision efficiency of the wild-type enzyme.

To elucidate the potential mechanism by which ED might induce cell death when combined with troxactitabine, we measured DNA strand breaks using the alkaline single-cell gel electrophoresis (Comet) assay. We postulated that the dominant-negative protein would bind 3’-t-oddC replication intermediates and prevent repair processing, resulting in the hyperaccumulation of blocked termini and genotoxic strand breaks in the chromosomal DNA. As shown in Fig. 3C, Comet analysis (see Materials and Methods) indeed found that the high ED-expressing cell line ED8 displayed a statistically greater Olive tail moment (OTM; i.e., DNA fragmentation) as compared with the T-REx control, with an ~35% and 17% increase in DNA damage at 10 and 30 μmol/L. troxactitabine, respectively.

Effect of ED on Sensitivity to the Antimetabolite 5-Fluorouracil

Recent evidence has suggested a role for BER capacity in cellular resistance to the antimetabolite 5-fluorouracil (5-FU), a drug that has been used in the clinic for decades to treat a variety of solid tumors, most notably colorectal cancer (26, 27). First, the 5-FU metabolite FdUMP inhibits thymidylate synthase activity, which is responsible for the synthesis of thymidine via reductive methylation of dUMP to dTMP. In the absence of efficient thymidylate synthase function, cellular nucleotide pools become imbalanced with a significant increase in dUTP, resulting in high levels of uracil in chromosomal DNA. Uracil is a substrate of uracil DNA glycosylases, such as UNG, which excise the modified base from DNA to create an AP site (25). To elucidate the potential mechanism by which ED might increase the potency of 5-FU-induced cell killing, Indeed, colony formation assays following ED expression and 5-FU or 5-F-deoxyuridine (5-FdU) treatment resulted in a 4.8- to 5.2-fold and an ~25 fold increase in drug sensitivity, respectively (Fig. 4A).

To gain insight into the mechanism of 5-FU-induced cell killing, we measured both AP site damage and apoptosis (i.e., active caspase-positive cells) in the various ED-expressing and control CHO cell lines. We found that following 1 or 3 μmol/L 5-FU treatment, the high (ED8) and medium (ED5) ED-expressing cell lines accumulated significantly more abasic damage than did the low ED-expressing clone (ED6; 1.6- to 2-fold) or the T-REx control (2.3- to 4.3-fold; Fig. 4B). Notably, this finding suggests that BER DNA substrates/products are indeed formed during the metabolism of 5-FU. In addition, the ED5 and ED8 cell lines exhibited...
Table 1. Summary for Alkylating Agents

<table>
<thead>
<tr>
<th>Alkylator</th>
<th>Reaction Mechanism</th>
<th>Adduct Profile</th>
<th>Reference</th>
<th>ED Fold Enhancement of Cytotoxicity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS</td>
<td>SN2</td>
<td>82%, N7-MeG</td>
<td>(50)</td>
<td>4.8-6.3†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11%, N6-MeA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3%, O6-MeG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8%, PhosTri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNU</td>
<td>SN1</td>
<td>≥70%, N7-MeG</td>
<td>(50)</td>
<td>1.2-2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%, N7-MeA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3%, O6-MeG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMS</td>
<td>SN2/SN1</td>
<td>62%, N7-EtG</td>
<td>(50)</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4%, N7-EtA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2%, O7-EtG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13%, PhosTri</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>93%, N7-G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3%, O6-G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3% cross-links</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmustine (nitrosourea)</td>
<td>SN1, bifunctional</td>
<td>≥70%, N7-MeG</td>
<td>(50)</td>
<td>1.4-2.2†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%, N7-MeA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3%, O6-MeG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptozotocin (nitrosourea)</td>
<td>SN1</td>
<td>≥70%, N7-MeG</td>
<td>(42)</td>
<td>2.0-5.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%, N7-MeA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3%, O6-MeG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temozolomide (imidotetrazine)</td>
<td>SN1</td>
<td>≥70%, N7-MeG</td>
<td>(52)</td>
<td>2.9-4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%, N7-MeA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%, N7-MeA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dacarbazine (triazene)</td>
<td>SN1</td>
<td>≥70%, N7-MeG</td>
<td>(53)</td>
<td>1.2-1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%, N7-MeG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8%, O6-MeG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Busulfan (alkyl sulfonate)</td>
<td>SN2, bifunctional</td>
<td><10% cross-links</td>
<td>(54)</td>
<td>1.2-2.4</td>
</tr>
<tr>
<td>Melphalan (nitrogen mustard)</td>
<td>SN2, bifunctional</td>
<td><10% cross-links</td>
<td>(55)</td>
<td>1.1-1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38%, N7-G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20%, N7-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33%, cross-links</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiopeta (ethylenimine)</td>
<td>trifunctional</td>
<td>N7-MeG1 > N7-MeA > O6-MeG and cross-links</td>
<td>(56)</td>
<td>1.2-1.9</td>
</tr>
</tbody>
</table>

NOTE: Top three are laboratory chemicals; the remainder are clinical drugs (parentheses denote subclassification). Unless otherwise indicated, agent is monofunctional.
Abbreviations: Me, methyl; Et, ethyl; PhosTri, phosphotriester.
*Based on estimated LD50 values (see Results for explanation).
†From ref. 25.
‡Estimates could not be found.

Correspondingly greater active caspase staining, presumably reflective of increased apoptotic cell death (Fig. 4C).

Chronic ED Expression Causes G1 Arrest and Apoptosis
Whereas no obvious cellular changes (such as impaired growth or altered morphology) were observed on ED expression in the studies above, these experiments were done with only transient induction periods (~24 hours). To elucidate the effects of chronic ED production, the low (ED6), medium (ED5), and high (ED8) ED-expressing cell lines, as well as the T-REx parental control, were propagated continuously in the presence of 1 μM tet (with fresh tet-containing media introduced every 24 hours). Cell counts provided us with an initial means of assessing cell growth (i.e., doubling). In these experiments, cell number was measured via standard Coulter counter techniques at days 3, 6, and 8 after initial plating. These studies indicate a clear reduction in cell density (i.e., cells per milliliter) at day 6 for ED5 and ED8 that is not seen with the ED6 or T-REx lines under conditions of continuous tet exposure (Fig. 5A). At day 8, all cell lines began to exhibit reduced proliferative capacity in the presence of tet, presumably due to the cytostatic effects of chronic antibiotic treatment, although impaired growth was more pronounced for ED5 and ED8. Cell cycle analysis using propidium iodide staining and flow cytometry revealed that after 7 days of tet exposure, the ED5 and ED8 lines arrested in G1, whereas the low ED-expressing ED6 line and the T-REx control maintained a “normal” cell cycle profile with or without tet (Table 2). In addition, studies found that ED5 and ED8 exhibited a tet-dependent 12- to 13-fold increase in the percentage of cells that underwent apoptosis, recorded as active caspase staining (Fig. 5B). Finally, consistent with a previous investigation that indicated a causative role for genomic damage in the death of APE1-deficient cells (33), we observed a significantly greater, time-dependent accumulation of abasic sites in the chromosomal DNA of the ED5 and ED8 tet+ clones than in the low ED-expressing cell line ED6 or the T-REx control (Fig. 5C). These data as a whole indicate that chronic ED production results in AP site accumulation, G1 arrest, and apoptotic cell death.

Discussion
Early studies found that deletion of both alleles of APE1 in mice leads to embryonic lethality, underscoring the essential nature of the protein in animal development and viability (34, 35). More recent work has shown that sufficient depletion of human APE1 via RNAi leads to cell inviability in culture, apparently due to the accumulation of DNA damage such as AP sites (33). As a complementary means of assessing the biological function(s) of APE1, we developed a set of stable, tet-inducible, dominant-negative expressing CHO cell lines (25). The dominant-negative protein, termed ED, exhibits enhanced DNA binding affinity relative to wild type, yet displays a >56 million-fold reduced nuclease efficiency. Given these properties, we postulated that ED would bind with high affinity to target DNA substrates when produced in cells, and in doing
so, block normal APE1 nuclease functions and subsequent repair processing. Indeed, our work found that ED expression rendered cells hypersensitive to agents that generate BER substrates and induced a concomitant hyperaccumulation of AP sites (25). We have used here the model ED-expressing CHO cell lines to examine more exhaustively the role of APE1 and BER in the survival response to clinical “DNA-damaging” drugs, particularly alkylating agents and nucleoside analogues. We also explored the effect of chronic ED production on cell growth and viability.

As for alkylators, we found that ED expression broadly, albeit with some preference, enhanced cellular sensitivity to these agents. In particular, ED had little effect on sensitivity to melphalan; an intermediate effect with decarbazine, thiotepa, busulfan and carmustine; and the most pronounced effect (∼2.0- to 5.3-fold) with streptozotocin and temozolomide (Table 1). At first glance, the features that seem to be most common among the compounds that experience an ED-dependent enhancement in cytotoxicity (including the S\textsubscript{n}2 MMS and S\textsubscript{n}1 MNU laboratory agents) are (a) monofunctionality and (b) a propensity for N7-guanine, and to a lesser extent, N3-adenine alkylation. Presumably, such DNA adducts undergo spontaneous or glycosylase-mediated base release (7), resulting in the creation of a high number of cytotoxic AP sites, which are “sequestered” by the ED protein (25).

The alkylating agents that seem to escape the “feature-based” prediction outlined above are dacarbazine and busulfan (Table 1). Specifically, the monofunctional alkylator decarbazine would be anticipated to experience a pronounced ED-associated augmentation in cell killing. The lack of notable synergism (only 1.2- to 1.5-fold) could be explained, in part, by the high degree of O6-guanine alkylation, which is handled by a separate DNA repair response (4). Moreover, dacarbazine may not be effectively metabolized into its reactive form in T-REx CHO cells. As for the bifunctional agent busulfan, the unexpected outcome of a significant ED-dependent enhancement of cytotoxicity (1.2- to 2.4-fold) may stem from its low proclivity to form cross-links (<10% of total) and, possibly, although

![Graphs showing the effect of ED on clinical alkylating agent sensitivity.](image)
Our results support the latter finding, suggesting that (a) APE1 has no role in excising this nucleoside analogue, assuming incorporation into DNA; (b) gemcitabine induces cell death via a mechanism more related to inhibition of ribonucleoside reductase and depletion of deoxyribonucleotide pools (44); or (c) the effectiveness of the agent is dictated by the array and capacity of the responses specific to the cell type.

The most striking observation within was the pronounced effect of ED on nucleoside analogue sensitivity compared well with the known excision efficiency of APE1 for the different 3′-terminal nucleotides once incorporated into DNA. Specifically, the relative efficiency of APE1 3′ to 5′ exonuclease removal of the relevant analogues from deoxyoligonucleotide substrates is as follows: troxactabine (L-oddC), 100; zalcitabine (ddC), 12.3; gemcitabine (dFdC), 9.0; and cytarabine (araC), 3.7, although the comparative affinity (i.e., K_M) has not been determined (15). The effect of ED on cellular sensitivity was 2- to 3-fold for L-oddC, 1.6- to 2.8-fold for ddC, and essentially zero for both dFdC and araC (results herein and ref. 25). In addition, as assessed by the Comet assay, ED production increased the level of genotoxic strand breaks when combined with troxactabine, suggesting that the dominant negative protein prevents normal APE1 processing of 3′-oddC DNA intermediates. These findings are by and large in line with past studies showing that overexpression or down-regulation of APE1 can correspondingly modify cellular resistance to troxactabine (21, 43). The major role for APE1 in dictating responsiveness to troxactabine (brand name Troxatyl) implies that this protein may be an effective target for improving efficacy in the treatment of certain solid tumors and hematologic malignancies.

In the case of gemcitabine, one study found that suppression of APE1 via antisense oligonucleotides augmented the killing of Panc-1 pancreatic cancer cells (19), whereas in a separate study, down-regulation of APE1 by RNAi had no effect on sensitivity of RKO colon cancer cells to this antimetabolite (21). Our results support the latter finding, suggesting that (a) APE1 has no role in excising this nucleoside analogue, assuming incorporation into DNA; (b) gemcitabine induces cell death via a mechanism more related to inhibition of ribonucleoside reductase and depletion of deoxyribonucleotide pools (44); or (c) the effectiveness of the agent is dictated by the array and capacity of the responses specific to the cell type.

The most striking observation within was the pronounced effect that ED had on cell survival following exposure to the antimetabolites, 5-FU and 5-FdU. This enhanced sensitivity was the most dramatic seen for any of the therapeutics explored herein (~25-fold in the case of 5-FdU). The greater effect of ED on cell killing by 5-FdU relative to 5-FU (~5-fold) likely stems from the fact that the latter agent affects both DNA and RNA metabolism, whereas the former compound strictly

![Graph](image.png)

FIGURE 3. Effect of ED on cellular sensitivity to gemcitabine and troxactabine. Colony formation efficiency and percent survival were determined as described in Fig. 1 and Materials and Methods following exposure to the indicated doses of gemcitabine (A) or troxactabine (B). Points, average of at least five data points from three independent experimental runs; bars, SD. C, DNA strand break levels in ED8 and T-REx cell lines following exposure to troxactabine. After tet induction, ED8 and T-REx cells were treated with 0, 10, or 30 μg/mL troxactabine for 24 h and subsequently processed for Comet analysis (see Materials and Methods). Columns, average OTM determined from a minimum of 50 cells from three independent experimental slides; bars, SD. *, $P<0.002$; **, $P<0.01$. T-REx cells without tet or troxactabine treatment were found to have a similar OTM to tet-exposed T-REx controls (data not shown).
perturbs DNA (26). To our knowledge, this is the first report in a mammalian model system that disruption of endogenous APE1 function is relevant to the mechanism of 5-FU–mediated cytotoxicity and is consistent with the studies in yeast that have found a prominent role for APN1 in protecting cells from the lethality of 5-FU challenges (31, 32). Our studies also insinuate that 5-FU directs a BER response because we observed an ED-dependent accumulation of AP sites, which likely arise from release of uracil and 5-FU bases from DNA (30, 45). In all, evidence is emerging that implicates BER, as well as other DNA damage response systems such as mismatch repair, in determining cellular sensitivity to the antimetabolite 5-FU (45, 46), suggesting that these pathways may be reasonable targets for improving the efficacy of treatment for colon, rectal, breast, gastrointestinal, head and neck, and ovarian cancers (27).

Finally, we found that chronic expression of ED in the CHO cell lines leads to impaired cell growth, accumulation of DNA damage, G_1 arrest, and eventual apoptosis. This finding is consistent with prior studies that showed sufficient reduction in APE1 protein leads to cell inviability (33, 47), and further highlights the enormous level of endogenous DNA damage formed spontaneously and the importance of this repair nuclease in genome maintenance. Future studies will continue to dissect out the role of APE1 and BER in clinical agent resistance and more intensely focus on the relative importance of MGMT, MMR, and recombinational repair processes in regulating the overall responsiveness to and efficacy of alkylating drugs and antimetabolites.

Materials and Methods

Reagents

All laboratory agents and chemotherapeutics were purchased from Sigma-Aldrich, unless otherwise specified. Gemcitabine (NSC# 362856) was obtained from the Developmental Therapeutics Program of the National Cancer Institute (Bethesda, Maryland). Temozolomide and thiotepa were purchased from Schering-Plough Corporation and Bedford Laboratories, respectively. Troxacitabine was synthesized as previously described (48). DMEM and MEM were acquired from Invitrogen Corporation.

Colony Formation Survival Assays

The T-REx CHO control and ED-expressing cell lines were created and maintained as previously described (25). To evaluate cell survival following a specific chemical exposure, the

FIGURE 4. Effect of ED on cellular response to 5-FU and 5-FdU. **A.** Colony formation assay. Percent survival of ED5, ED6, ED8, and T-REx control was determined following exposure to the indicated doses of 5-FU (left) or 5-FdU (right) as described in Fig. 1 and Materials and Methods. Points, average of at least five data points from three independent experimental runs; bars, SD. **B.** AP site levels in the CHO cell lines following 5-FU exposure. After tet induction, the various CHO cell lines were exposed to 0, 1, or 3 μmol/L 5-FU for 24 h (as indicated), and the cells were collected 24 h later. Following isolation of chromosomal DNA, AP sites were measured using an aldehyde-reactive probe–based colorimetric assay (57). Abasic lesions are expressed as AP sites per 1 × 10^6 bp. **C.** Active caspase–positive staining following 5-FU exposure. ED5, ED6, ED8, and T-REx control cells were treated with 5-FU for 24 h (1 or 3 μmol/L; see inset) and subsequently fixed and probed with the caspase inhibitor sequence VAD linked to a carboxyfluorescein probe. Columns, average number of green-staining, caspase-positive cells per 50 from three independent experimental runs; bars, SD. T-REx cells without tet or 5-FU treatment were found to have a similar AP site level and caspase-positive staining in comparison with tet-exposed T-REx controls (data not shown).
various ED-expressing CHO cell lines and the T-REx control were grown to confluence, trypsinized, and counted. One hundred fifty cells of each cell line were transferred to each well of a six-well plate. Cells were allowed to adhere for 2 h before being incubated with 1 μg/mL tetracycline (tet). At the end of the 24-h tet exposure, cells were treated at the indicated concentrations with one of the following DNA-damaging agents: EMS (for 1 h), MNU (1 h), busulfan (24 h), dacarbazine (5 h), melphalan (1 h), streptozotocin (24 h), temozolomide (1 h), thiotaپ (1 h), troxacinacitrate (24 h), gencitabine (4 h), 5-FU (24 h), or 5-FdU (24 h). The cells were then gently washed twice with 1× PBS and incubated for 10 d with fresh DMEM to allow individual colonies to form. At that time, colonies were stained with methylene blue and counted, and the percent survival was determined relative to the untreated control (25).

DNA Damage Measurements

Single-cell gel electrophoresis Comet assays were carried out essentially as described in (49). Specifically, after a 24 h tet treatment, T-REx and ED8 cells were exposed to 0, 10, or 30 μg/mL troxacinacitrate for 24 h under normal growth conditions. The cells were washed twice with 1× PBS, trypsinized, rewashed, and counted using a Beckman Coulter counter. Two million cells from each treatment condition were subsequently isolated and resuspended in 70 μL of 1.2% low melting point agarose (Fisher Scientific) in 1× PBS. The agarose/cell mix was added to a predipped slide coated with 1% normal melting agarose (IBI) and spread using a coverslip. After being placed for 5 min on a prechilled (iced) aluminum tray, the coverslips were removed, with an additional 70 μL of 1.2% low melting point agarose added, covered with a coverslip, and chilled on the iced aluminum tray. Again, the coverslips were removed, and the slides were then placed in prechilled lysis solution [2.5 mol/L NaCl, 100 mmol/L EDTA, 10 mmol/L Trizma base (pH 10), 1% sodium laurylsarcosinate, 10% DMSO, and 1% Triton X-100] for 4 h at 4°C. Slides were washed thrice for 5 min at 4°C in 0.4 mol/L Tris buffer (pH 7.5). Next, the slides were incubated in alkali solution (300 mmol/L NaOH and 1 mmol/L EDTA, pH 13) for 30 min and subsequently electrophoresed horizontally for 30 min at 4°C at 30V. The slides were washed thrice for 15 min at 4°C in 0.4 mol/L Tris buffer (pH 7.5) and, after staining with ethidium bromide (final concentration 5 μg/mL), they were viewed using a Zeiss Axiosvert 200 mL fluorescent microscope. The analysis of the comet tail was carried out using the Komet 5.5 software (Kinetic Imaging) to determine the OTM. OTM = [(the mean length of the tail – the mean length of the head) ÷ percentage of DNA in the tail/100]. This experiment was repeated thrice for each cell line and experimental condition, and the data shown represent the average and SD of the OTM determined for at least 150 cells (≥50 cells per experiment).

Table 2. Cell Cycle Distribution of Chronic ED-Expressing CHO Cell Lines and the T-REx CHO Control

<table>
<thead>
<tr>
<th>Cell Cycle Distribution</th>
<th>T-REx</th>
<th>ED5</th>
<th>ED6</th>
<th>ED8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>−Tet</td>
<td>+Tet</td>
<td>−Tet</td>
<td>+Tet</td>
</tr>
<tr>
<td>%G1</td>
<td>34.3</td>
<td>36.3</td>
<td>36.1</td>
<td>52.8</td>
</tr>
<tr>
<td>%G2</td>
<td>7.91</td>
<td>8.14</td>
<td>9.40</td>
<td>11.9</td>
</tr>
<tr>
<td>%S</td>
<td>57.8</td>
<td>55.6</td>
<td>54.5</td>
<td>35.3</td>
</tr>
</tbody>
</table>

NOTE: The indicated cell line was maintained in DMEM with (+) or without (−) tetracycline (Tet). At day 7, cells were harvested and analyzed for cell cycle profile via flow cytometer. Shown is the percentage of cells in the G1, G2, or S phase. The results are from a representative study of three independent experimental runs.
Steady-state AP site levels were measured in purified genomic DNA using the DNA Damage Quantification Kit from Dojindo Molecular Technologies, Inc., as previously described (25).

Cell Growth, Cell Cycle Profile, and Apoptosis Measurements
To characterize the response of the cells to chronic tet exposure, samples of the ED-expressing CHO cell lines (i.e., ED5, ED6, and ED8) and the T-REx control were counted using a Beckman Coulter counter. Five thousand cells were then added to a flask and maintained in DMEM with or without 1 μg/mL tet for the duration of the experiment; fresh medium (with or without tet) was added daily. At days 3, 6, and 8, one flask from each cell line under tet+ or tet− growth conditions was trypsinized, counted to determine number of cells per milliliter (i.e., cell growth), and frozen for future AP site analysis (see above).

To determine cell cycle distribution, a flask of each cell type with or without 1 μg/mL tet was trypsinized at day 7 and counted using a Beckman Coulter counter. One million cells were then washed with 1× PBS twice, fixed with 70% ice cold ethanol, washed again, and stained with propidium iodide solution (containing RNase A from Bovine pancreas). Cells were subsequently analyzed with a FACS Calibur flow cytometry system (BD Biosciences) using the 488-nm excitation to collect forward light scatter and red fluorescence above 600 nm.

Apoptosis was measured using the poly-caspases FLICA apoptosis detection kit from Immunochemistry Technologies, LLC. The kit uses an inhibitor sequence of caspases (VAD, which reacts with all caspases) linked to a green (carboxyfluorescein, FAM) fluorescent probe. In brief, ED5, ED6, ED8, and T-REx control cells were cultured for 7 d with or without 1 μg/mL tet. Cells were then washed with wash buffer (see detailed procedure provided by manufacturer), exposed to FLICA solution for 1 h in medium, and washed again. Next, the cells were exposed to propidium iodide, Hoechst stain, and fixed using the standard protocol for adherent cells outlined in the kit manual. Fifty-plus cells of each reaction condition were visualized using a Zeiss Axiovert microscope and counted for caspase-positive (green) staining. Each of the experimental assessments above was repeated at least thrice.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
We thank Robert Wersto, Joe Chest, and Christa Morris from the National Institute of Aging flow laboratory for assistance with the cell cycle distribution analysis.

References
32. Hoskins J, Scott BJ. Evidence for distinct DNA- and RNA-based...

45. Fischer F, Baerenfaller K, Jiricny J. 5-Fluorouracil is efficiently removed from DNA by the base excision and mismatch repair systems. Gastroenterology 2007;133:1858–68.

Impairment of APE1 Function Enhances Cellular Sensitivity to Clinically Relevant Alkylators and Antimetabolites

Updated version Access the most recent version of this article at: doi:10.1158/1541-7786.MCR-08-0519

Cited articles This article cites 55 articles, 17 of which you can access for free at: http://mcr.aacrjournals.org/content/7/6/897.full.html#ref-list-1

Citing articles This article has been cited by 4 HighWire-hosted articles. Access the articles at: /content/7/6/897.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.