Binding of the Retinoblastoma Protein Is Not the Determinant for Stable Repression of Some E2F-Regulated Promoters in Muscle Cells

Marie Vandromme, Catherine Chailleux, Fabrice Escaffit, and Didier Trouche

Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Proliferation, Centre National de la Recherche Scientifique and University of Toulouse, Toulouse, France

Abstract
Permanent silencing of E2F-dependent genes is a hallmark of the irreversible cell cycle exit that characterizes terminally differentiated and senescent cells. The determinant of this silencing during senescence has been proposed to be the binding of the retinoblastoma protein Rb and the consequent methylation of H3K9. During ex vivo skeletal muscle differentiation, while most cells terminally differentiate and form myotubes, a subset of myoblasts remains quiescent and can be induced by growth factor stimulation to enter the cell cycle. Thus, differentiating cells are composed of two different populations: one in which E2F-dependent genes are permanently repressed and the other not. We observed that, in a manner reminiscent to senescent cells, permanent silencing of the E2F-dependent cdc6, dhfr, and p107 promoters in myotubes was associated with a specific increase in H3K9 trimethylation. To investigate the role of Rb in this process, we developed a reliable method to detect Rb recruitment by chromatin immunoprecipitation. Surprisingly, we observed that Rb was recruited to these promoters more efficiently in quiescent cells than in myotubes. Thus, our data indicate that during muscle differentiation, permanent silencing and H3K9 trimethylation of some E2F-dependent genes are not directly specified by Rb binding, in contrast to what is proposed for senescence. (Mol Cancer Res 2008;6(3):418–25)

Introduction
Skeletal muscle differentiation is a tightly regulated process during which proliferative myoblasts stop to divide and fuse into multinucleated myotubes. Proliferation and differentiation are two mutually exclusive processes. As such, myotubes are terminally differentiated cells that have permanently escaped from the cell cycle. Only experimental conditions can trigger myotubes to reenter the cell cycle and complete G1-to-S phase transition. As such, ectopically expressed viral proteins such as the adenoviral E1A gene product can trigger DNA synthesis in terminally differentiated myotubes. The recovery to complete DNA synthesis is, in part, due to the ability of E1A to bind to and inhibit pocket proteins such as the retinoblastoma protein (Rb) and, consequently, derepress E2F-responsive genes essential for G1-S transition (1) because Rb is a key regulator of the E2F family of transcription factors. During G0-G1 phases of the cell cycle, Rb (and the other pocket proteins p107 and p130) binds to E2Fs, inhibiting their activity. During progression through the G1 phase, Rb becomes hyperphosphorylated by cyclin-dependent kinase (cdk)-4-cyclin D1 and cdk2-cyclin E complexes and is released from E2F. Free E2Fs then activate target genes involved in the G1-to-S phase transition, such as cyclin A and cdk1, and in S-phase progression, such as dhfr and cdc6. During muscle terminal differentiation, Rb becomes hypophosphorylated and mRNA and protein levels increase in a MyoD- and cyclic AMP responsive element binding protein—dependent manner (2-4). In addition to its inhibitory role on cell proliferation, Rb is a positive regulator of skeletal muscle differentiation. Indeed, Rb0–− myoblasts fail to terminally differentiate although they can express the early differentiation marker myogenin (5, 6). The other pocket proteins, p107 and p130, cannot substitute for Rb in this process, although p107 was shown to be up-regulated in Rb0–− myoblasts (5).

It is noteworthy that, despite the abundance of hypophosphorylated Rb, p130-E2F complexes were shown to be the predominant E2F complexes in myotubes (3, 7). However, Rb is required both for efficient cell cycle exit and for the permanent repression of E2F-dependent genes. Indeed, two independent studies recently reported that knocking out Rb following myotube formation allowed the reexpression of E2F-dependent genes (although S phase was not restored), showing the importance of Rb in silencing E2F-dependent genes in myotubes (8, 9).

Pocket proteins achieve their inhibitory roles on E2F-dependent genes by two ways. First, they bind to and consequently inhibit the activator domain of E2F-1 to E2F-5. Second, they recruit transcriptional corepressors such as histone-modifying enzymes that locally modify chromatin in the vicinity of the E2F binding sites. As such, histone deacetylation correlates with repression of E2F target genes...
Rb Binding and Permanent Repression

Results

Differentiating C2C12 Cells Expressed Higher Levels of Rb and p130

Whereas the roles of pocket proteins in muscle terminal differentiation and for the concomitant permanent cell cycle exit have been extensively characterized, the binding of these proteins to their most characterized DNA target sequences (i.e., E2F-responsive genes) has never been studied. Yet, in other cell models, the permanent growth arrest induced by senescence correlates with specific recruitment of Rb to E2F-regulated promoters (19).

To study pocket protein binding to E2F-regulated promoters in differentiating myoblasts, we used C2C12 cells, which can be induced to differentiate in vitro. Indeed, when shifted at confluence into a medium with low levels of growth factors, C2C12 cells stop proliferating and enter a terminal differentiation program. We found that, as expected, differentiating cells expressed muscle-specific genes, such as myogenin and mck (data not shown). In addition, the expression of some E2F-regulated genes [dihydrofolate reductase–encoding gene (dhfr) and cdc6] decreased strongly (Fig. 1A), in parallel with the concomitant cell cycle arrest. To gain a first insight into the identity of the pocket proteins responsible for this repression, we analyzed the expression of all three pocket proteins by Western blot. We found that in differentiating cells, both Rb and p130 levels were increased compared with proliferating myoblasts (Fig. 1B). Moreover, the hypophosphorylated form of Rb, which is presumably the active form of Rb, was largely predominant in differentiating cells. In contrast, p107 levels decreased strongly, and the protein was nearly undetectable on serum withdrawal (Fig. 1B), as expected, because the p107-encoding gene is a target of E2F (20). Thus, altogether, these results are consistent with previously described results (17) and suggest that E2F regulation in differentiating cells is brought about by p130 and/or Rb.

Rb Binding to Some E2F-Regulated Promoters Can Be Analyzed by Chromatin Immunoprecipitation

Whereas binding of p130 and p107 to E2F-regulated promoters has been widely monitored by chromatin immunoprecipitation, Rb binding has always been more elusive. Indeed, many studies failed to detect Rb binding to E2F-regulated promoters by chromatin immunoprecipitation (18, 21-23). To test whether we could detect Rb binding by chromatin immunoprecipitation, we used chromatin prepared from cells induced to differentiate for 2 days because they expressed high levels of Rb and p130 proteins (Fig. 1B). We found that the anti-Rb and anti-p130 antibodies were both able to immunoprecipitate their target protein in chromatin immunoprecipitation conditions (data not shown). To precisely quantify chromatin immunoprecipitation efficiency, we used real-time quantitative PCR to analyze the presence of E2F-regulated promoters (the dhfr or cdc6 promoters) and a control sequence (from the gapdh promoter (gapdh)). We first carried out a classic chromatin immunoprecipitation experiment with formaldehyde as a cross-linking product. Using this protocol, we immunoprecipitated more cdc6 promoter (an E2F-regulated promoter) with the anti-p130 antibody than in the control immunoprecipitates (without antibody; Fig. 2A). Moreover, this
Analysis of Rb Binding to the cdc6 Promoter during Terminal Differentiation

We then analyzed Rb binding to the cdc6 promoter (which reproducibly was the most enriched of the E2F-regulated promoters we analyzed in Rb chromatin immunoprecipitation) during the differentiation process. We prepared DMA and formaldehyde-fixed chromatin from proliferating cells or from cells that had been shifted to differentiation medium for 1, 2, or 3 days. We carried out chromatin immunoprecipitation with anti-Rb antibodies, and we analyzed the presence of cdc6 promoter or gapdh promoter in the Rb immunoprecipitates. We found that Rb binding to the cdc6 promoter gradually increased in differentiating cells (Fig. 3), with a maximal binding after 3 days of differentiation induction, which was the latest time analyzed. Analysis of an unrelated sequence (from the gapdh promoter) did not show any increase in the same time course. Thus, this experiment indicates that Rb binding to the E2F-regulated cdc6 promoter was increased when muscle cells stopped proliferating to differentiate.

Quiescent and Terminally Differentiated C2C12 Cells Harbored Distinct Chromatin Marks on Some E2F-Regulated Promoters

In contrast to quiescent cells, terminally differentiated muscle cells have irreversibly exited the cell cycle. Accordingly, E2F-responsive genes are permanently repressed, whereas they can still be activated in quiescent cells. Importantly, these distinct transcriptional states of E2F-regulated promoters (permanent versus non permanent repression) have been shown to be associated with distinct chromatin features, in particular heterochromatic K9 methylation (most likely trimethylation;
We found that trimethylation of H3K9 increased in myotubes (Fig. 4C). We analyzed the presence of heterochromatic marks (H3K9 trimethylation) by chromatin immunoprecipitation (Fig. 4C). We then subjected chromatin from quiescent or terminally differentiated cells (separated by mild trypsin digestion) as well as from control proliferating C2C12 cells, and terminally differentiated cells (myotubes) and quiescent myoblasts from the same cell lines. We took advantage of this system in which any indirect effect of the culture conditions can be ruled out to investigate the determinants of permanent repression of E2F-dependent genes during terminal differentiation.

Reverse transcription followed by real-time PCR analysis indicates that trypsin-sensitive cells were terminally differentiated because they expressed muscle-specific genes, such as myogenin and mck, and E2F-regulated genes (such as cdc6 and dhfr) were repressed (Fig. 4A and B). Cells that were resistant to trypsin digestion harbored features characteristic of quiescent cells: E2F-regulated promoters were repressed, as expected, because these cells have exited the cell cycle, but muscle-specific genes were not activated; these cells thus harbored features of quiescent myoblasts (Fig. 4A and B).

We therefore prepared chromatin from these two cell populations, as well as from control proliferating C2C12 cells, and analyzed the presence of heterochromatic marks (H3K9 trimethylation) by chromatin immunoprecipitation (Fig. 4C). We found that trimethylation of H3K9 increased in myotubes compared with proliferating cells on various E2F-responsive promoters (cdc6, dhfr, and p107 promoters). Although this increase is weak (~2-fold), it is similar to previously published results (15). Moreover, this increase was specific because it was not observed on the control gapdh promoter. Most interestingly, the presence of this heterochromatic mark was not increased in quiescent cells on any of the E2F-regulated promoters we analyzed compared with proliferating cells. Thus, this result indicates that in C2C12 cells, the presence of trimethylation of H3K9 on some E2F-responsive promoters correlates with their permanent repression.

Binding of Rb to Some E2F-Regulated Promoters Did Not Correlate with Permanent Cell Cycle Exit

Rb has been shown to bind to E2F-regulated promoters only when these promoters are permanently repressed (19). It has been proposed to mediate this stable repression by targeting chromatin marks specific for heterochromatin on E2F-regulated promoters, thereby permanently preventing them from being transcribed. To test whether Rb binding would correlate with the presence of heterochromatic marks on E2F-regulated promoters, we prepared DNA with formaldehyde–cross-linked chromatin from quiescent or terminally differentiated cells (separated by mild trypsin digestion) as well as from proliferating myoblasts as a control. We then carried out chromatin immunoprecipitation analysis with anti-Rb antibodies (Fig. 5A). We found that Rb binding to the E2F-regulated cdc6 promoter increased in myotubes compared with proliferating C2C12 cells (top graph). Strikingly, however, binding of Rb to the cdc6 promoter was higher, if anything, in quiescent cells than in myotubes (Fig. 5A, bottom graph). Similar results were obtained for the dhfr and p107 promoters (Fig. 5B). Therefore, these data indicate that the status of an E2F-regulated promoter with respect to permanent or nonpermanent silencing does not correlate with the binding of Rb protein. Consequently, binding of Rb to E2F-regulated promoters is not the sole determinant of their permanent repression in myotubes.

Discussion

In this article, we analyze the involvement of the retinoblastoma protein in the regulation of some E2F-regulated promoters during muscle terminal differentiation. We first set up a reliable method to detect Rb binding to E2F-regulated promoters by chromatin immunoprecipitation. Indeed, although it was generally proposed that E2F-regulated genes were an important target of the retinoblastoma protein, previous studies detected only very low or even no binding of Rb to E2F-regulated promoters, whereas binding of the two other pocket proteins was easy to detect (18, 21-23). Because of these limitations, binding of Rb to E2F-regulated promoters was, to our knowledge, never assessed by quantitative PCR, although this technique is an important improvement because it allows quantification of background levels of target sequences (which is crucial when the chromatin immunoprecipitation signals are weak). Here, we show that the addition of a protein/protein cross-linking step before the classic formaldehyde cross-link allowed us to reliably and quantitatively measure binding of Rb to at least three E2F-targeted promoters. This method should prove very useful for fundamental as well as cancer-related.
studies, considering the importance of the Rb pathway in cancer.

We use our method to investigate Rb binding to some E2F-regulated promoters during the course of muscle cell terminal differentiation. Indeed, terminally differentiated muscle cells stop proliferating and cannot be induced to enter the cell cycle again. Interestingly, Rb expression is required for this stable cell cycle exit, and Rb cannot be compensated by other members of the pocket proteins family (5). Moreover, in terminally differentiated cells, E2F-responsive genes are stably repressed and have been proposed to harbor specific heterochromatic marks (15).

In vitro cultured C2C12 cells represent a nice model to study muscle terminal differentiation because they can be induced to differentiate *in vitro* on shifting to low serum. Moreover, it is possible to compare directly differentiated cells that have irreversibly exited the cell cycle and undifferentiated quiescent cells that have stopped proliferating but can still be induced to enter the cell cycle. E2F-responsive genes are regulated accordingly, that is, they are stably repressed in terminally differentiated cells, but can be reactivated in quiescent cells. Importantly, because these cells are harvested from the same dish, one can rule out any indirect effect originating from the culture conditions. We found that Rb binding is not the determinant for this differential regulation, at least for the three E2F-target genes we analyzed (*cdc6*, *dhfr*, and *p107*), because Rb binding in quiescent cells is comparable with that in terminally differentiated cells. Of course, it would be better to analyze more E2F-targeted genes than the three we analyzed. However, E2F-targeted promoters are very G/C rich and are therefore very difficult to analyze by real-time PCR. Along this line, we never succeeded to analyze the *cyclin E* promoter, which would have been very interesting because it has previously been shown to be targeted by Rb in quiescent cells (24). Nevertheless, because we found very similar results for the three E2F-regulated genes we analyzed, with respect to their

FIGURE 4. Validation of quiescent and differentiated C2C12 cells. A, C2C12 cells were either cultured in proliferation conditions (*P*) or in differentiation conditions for 3 to 4 d. This latter culture was then treated with trypsin to collect either fully differentiated cells (myotubes, MT) or quiescent nondifferentiated cells (*Q*), as described in Materials and Methods. Total mRNA was then extracted and reverse transcribed, and the expression of *cdc6*, *dhfr*, and *gapdh* mRNA was measured by quantitative PCR. The amounts of *cdc6* and *dhfr* mRNA were divided by the amount of *gapdh* mRNA and calculated relative to 100 in proliferating cells. B, Same as in A, except that *myogenin* and *mck* (muscle creatine kinase) mRNA amounts were divided by the amount of *gapdh* mRNA and calculated relative to 100 in myotubes. C, Chromatin from formaldehyde–cross-linked proliferating, quiescent, or terminally differentiated C2C12 cells was prepared and subjected to a chromatin immunoprecipitation analysis with antibodies recognizing trimethylated H3K9 (K9-Met3) or no antibody as a control (−). The amounts of *cdc6* promoter, *dhfr* promoter, *p107* promoter (three E2F-regulated genes), or control *gapdh* promoter in the inputs and in the immunoprecipitates were then measured by quantitative PCR.
transcriptional regulation, to the presence of heterochromatic marks on their promoters, and to Rb binding to their promoters, we believe that our findings are likely to be true for most, if not all, E2F-regulated promoters. It remains possible, however, that a subset of E2F-regulated promoters are bound by Rb in myotubes but not in myoblasts. Large-scale studies such as chromatin immunoprecipitation on chips could help to resolve this point.

Our results thus stand in contrast to those of Narita et al. (19), who found that Rb binding to E2F-regulated promoters strictly correlated with irreversible growth arrest in ras-induced senescent IMR90 cells and was not observed in the corresponding quiescent cells. This discrepancy could be due to an intrinsic difference between cell types. Note, however, that in this study, quiescent cells and senescent cells were obtained through very different technical procedures, and one cannot rule out the possibility that Rb binding during senescence is only an indirect consequence of the experimental settings leading to senescence (such as c-ras expression). Our results show unambiguously that in differentiating muscle cells, there is no correlation between Rb binding to the E2F-regulated promoters we analyzed and their stable repression.

Our results stand in apparent discrepancy with the observation that Rb is required for the stable repression of E2F-responsive genes during muscle differentiation. However, it is possible that although Rb binds to E2F-regulated promoters both in quiescent and in differentiating cells, it can only induce stable repression in differentiating cells; the determinant of stable repression would not be Rb binding but rather the identity of cofactors recruited to Rb to E2F-regulated promoters. What could be these cofactors? It has previously been proposed that stable repression of E2F-regulated promoters during muscle differentiation is due to the establishment of a “heterochromatic-like” structure on these promoters (25). Indeed, by comparing quiescent fibroblasts with differentiated C2C12 cells, Ait-Si-Ali et al. (15) observed that silencing of E2F-responsive genes correlated with the presence of a heterochromatic mark (H3K9 methylation). Moreover, it required the expression of Suv39H1, an enzyme responsible for H3K9 trimethylation in heterochromatin. Interestingly, we confirmed these results using quiescent C2C12 cells; we found that quiescent C2C12 cells and differentiated C2C12 cells harbored distinct levels of trimethylated H3K9 on E2F-regulated promoters. It is thus tempting to speculate that the determinant of stable repression is the Rb-mediated recruitment of Suv39H1 to E2F-regulated promoters. It would thus be very informative to investigate the regulation of Rb/Suv39H1 interaction and how it relates to muscle differentiation. It has to be noted, however, that the other pocket proteins can also interact with Suv39H1 (13), and it would thus be unclear why they would not be able to compensate for the absence of Rb.
Noteworthy, methylated H3K9 represents a docking site for HP1 proteins (HP1α, HP1β, and HP1γ) that play essential roles in establishing and maintaining heterochromatin-mediated gene silencing. Whether HP1 binds to E2F target genes only in muscle differentiated cells is not known. However, HP1 can directly bind not only to Rb (14) but also to p130 (26). As such, similarly to Suv39H1, it would be unclear why p130 could not compensate for the absence of Rb in stably repressing E2F-dependent genes in myotubes. Nevertheless, it was recently shown that stable repression of E2F-dependent genes in terminally differentiated neurons relies on the identity of HP1 isoforms recruited on their promoters. Indeed, Panteleeva et al. (26) clearly evidenced a molecular switch from HP1 isoforms recruited on their promoters. Indeed, Panteleeva et al. shown that stable repression of E2F-dependent genes in compensation for the absence of Rb in stably repressing E2F-directly bind not only to Rb (14) but also to p130 (26). As such, muscle differentiated cells is not known. However, HP1 can in establishing and maintaining heterochromatin-mediated gene modifications are ideal candidates for regulating the identity of Rb cofactors and subsequently the chromatic marks induced by posttranslational modifications, including phosphorylation, acetylation, sumoylation, and ubiquitylation (28-31). These dynamic modifications are ideal candidates for regulating the identity of Rb cofactors and subsequently the chromatic marks induced on E2F-regulated promoters by the presence of Rb in various conditions.

Materials and Methods

Cell Culture

C2C12 cells were cultured in DMEM/Ham’s F-12 medium supplemented with antibiotics and 15% FCS (Invitrogen). Cells were grown at 37°C under a humidified atmosphere with 5% CO2. Differentiation was induced by shifting cells to a low-serum medium (DMEM supplemented with 2% horse serum). After 4 d in differentiation medium, myotubes and quiescent cells were separated by mild trypsinization as previously described (17).

Antibodies

The antibodies used were mouse monoclonal anti-myogenicin (F5D, hybridomas), rabbit anti-p107 (C-18, Santa Cruz), rabbit anti-p130 (C-20, Santa Cruz), mouse monoclonal anti-Rb (XZ55 and G3-245, PharMingen), and mouse monoclonal anti-tubulin (DM1A, Sigma) antibodies. Western blots were done following standard procedures.

RNA Extraction and Reverse Transcription

Total RNA was extracted using the RNasy mini kit as described by the supplier (Qiagen). One microgram of each purified RNA preparation was reversed transcribed for 50 min at 42°C in a 20-μL reaction containing 0.5 μg of random primers (Promega), 1× avian myeloblastosis virus reverse transcriptase buffer, 10 units of avian myeloblastosis virus reverse transcriptase (Promega), 40 units of rRNasin (Promega), 10 mmol/L DTT, and 0.5 mmol/L deoxynucleotides (Promega). The reaction was stopped by incubating the samples for 15 min at 70°C, and cDNAs were analyzed by real-time quantitative PCR.

Chromatin Immunoprecipitation

For Rb immunoprecipitation, cross-linking of cells was carried out essentially as described (32). Briefly, cells were collected by trypsinization, washed twice in PBS, and resuspended in 10 mmol/L DNA (Fierce), 0.25% DMSO for 45 min under agitation at room temperature. Cells were then washed once with PBS and incubated with 1% formaldehyde for 15 min. For p130 chromatin immunoprecipitation, formaldehyde was added to the culture medium to a final concentration of 1% and cross-linking was allowed to proceed for 15 min at room temperature. In both cases, cross-linking was stopped by adding 0.125 mol/L glycine for 5 min. The preparation of chromatin and the immunoprecipitation steps were done as previously described (33). Nuclei extracts were sonicated to obtain DNA fragments of about 500 to 1,000 pb. Immunoprecipitation was carried out with 7.5 μg of each anti-Rb antibody (XZ55 and G3-245, PharMingen) or 4 μg of anti-p130 antibody (C-20, Santa Cruz) or without antibody. Following cross-link reversal, the immunoprecipitated DNA and input DNA were purified on a GFX column (GE Healthcare Biosciences) and analyzed by real-time quantitative PCR.

Quantitative PCR

Real-time quantitative PCR was carried out according to the manufacturer’s instructions using Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen) on an ICyclerIQ (Bio-Rad) real-time PCR device. Samples were analyzed in triplicate, and the mean and SD were calculated.

For cDNA quantification, the following primers were used: gapdh forward, 5′-AGGTGTCATGCGGACCTTC-3′; gapdh reverse, 5′-ATGAGCCATGAGGTCCAC-3′; cdc6 forward, 5′-CAGTGTCGATCCGATTC-3′; cdc6 reverse, 5′-GATCACATGCCACTTTAAA-3′; dhfr forward, 5′-GGTAGAAACCTGTTTC-3′; dhfr reverse, 5′-CAGAACTGCTCCGACTATC-3′; myogenin forward,
myogenin reverse 5'-AGATTGGGGCTCTGGTAGG-3'; mck forward, 5'-GATTTCACTCCAGCTCTGTC-3'; mck reverse, 5'-GCCCTTTTCAAGCTTCT-3'.

For chromatin immunoprecipitation experiments, the following primers that amplify gene promoter (P) were used: 5'-CTAGGCGCTTCTGCT ACC-3' (gapdh forward), 5'-CTGATCGTCAGTCACGAT-3' (gapdh reverse), 5'-GCTACGCCATAGGTCAGGAT-3' (p107 forward), 5'-TCTCTGACCTGGGCTTCTA-3' (p107 reverse), 5'-GAAGCTTTCTCATGACACT-3' (c6d-3') forward, 5'-CCGATTTTGCATCAACAGA-3' c6d-3' reverse, CTCGAAAGTCCGATGAGTAA.

References

Molecular Cancer Research

Binding of the Retinoblastoma Protein Is Not the Determinant for Stable Repression of Some E2F-Regulated Promoters in Muscle Cells

Marie Vandromme, Catherine Chailleux, Fabrice Escaffit, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-07-0381

Cited articles
This article cites 33 articles, 17 of which you can access for free at:
http://mcr.aacrjournals.org/content/6/3/418.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/6/3/418.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.