Table of Contents

Highlights of This Issue 1299

MCR Rapid Impact

1301 A Massively Parallel Fluorescence Assay to Characterize the Effects of Synonymous Mutations on TP53 Expression
Geetha Bhagavatula, Matthew S. Rich, David L. Young, Maximilian Marin, and Stanley Fields

CELL DEATH AND SURVIVAL

1308 Synergistic Activity with NOTCH Inhibition and Androgen Ablation in ERG-Positive Prostate Cancer Cells
Ahmed A. Mohamed, Shyh-Han Tan, Charles P. Xavier, Shilpa Katta, Wei Huang, Lakshmi Ravindranath, Muhammad Jamal, Hua Li, Meera Srivastava, Eri S. Srivatsan, Taduru L. Sreenath, David G. McLeod, Alagarsamy Srinivasan, Gyorgy Petrovics, Albert Dobi, and Shiv Srivastava

1318 Tuberin Regulates Prostaglandin Receptor-Mediated Viability, via Rheb, in mTORC1-Hyperactive Cells
Chenggang Li, Xiaolei Liu, Yang Liu, Erik Zhang, Kantha Medepalli, Kouhei Masuda, Na Li, Kathryn A. Wikenheiser-Brokamp, Andrew Osterburg, Michael T. Borchers, Elizabeth J. Kopras, David R. Plas, Julia Sun, David N. Franz, Jamie K. Capal, Maxwell Mays, Yang Sun, David J. Kwiatkowski, Anya Alayev, Marina K. Holz, Darcy A. Krueger, Brian J. Siroky, and Jane J. Yu

CHROMATIN, EPIGENETICS, AND RNA REGULATION

1331 Interferon-Stimulated Genes Are Transcriptionally Repressed by PR in Breast Cancer

1341 FOXC1 Regulates FGFR1 Isoform Switching to Promote Invasion Following TGFβ-Induced EMT
Alex Hopkins, Mackenzie L. Coatham, and Fred B. Berry

GENOMICS

1354 Integrative CAGE and DNA Methylation Profiling Identify Epigenetically Regulated Genes in NSCLC

METABOLISM

1366 ERRA Maintains Mitochondrial Oxidative Metabolism and Constitutes an Actionable Target in PGC1α-Elevated Melanomas
Chi Luo, Eduardo Balsa, Ajith Thomas, Maximilian Hatting, Mark Jedrychowski, Steven P. Gygi, Hans R. Wildlund, and Pere Puigserver

ONCOGENES AND TUMOR SUPPRESSORS

1376 Phostine PST3.1a Targets MGAT5 and Inhibits Glioblastoma-Initiating Cell Invasiveness and Proliferation
Zahra Hassani, Ali Saleh, Soumaya Turpault, Salim Khiati, Willy Morelle, Jacques Vignon, Jean-Philippe Hugnot, Emmanuelle Uro-Coste, Philippe LeGrand, Marcel Delaforge, Sérine Leiteau, Ludovic Clarion, Marc Lecouvey, Jean-Noël Volle, David Virieux, Jean-Luc Pirat, Hugues Duffau, and Norbert Bakalara

1388 Homeobox Transcription Factor NKX2-1 Promotes Cyclin D1 Transcription in Lung Adenocarcinomas
Masanori Harada, Satoshi Sakai, Tatsuya Ohhata, Kyoko Kitagawa, Masashi Mikamo, Koji Nishimoto, Chiharu Uchida, Hiroyuki Niida, Yojiro Kotake, Haruhiko Sugimura, Takaumi Suda, and Masatoshi Kitagawa

1398 p120-Catenin Downregulation and PIK3CA Mutations Cooperate to Induce Invasion through MMP1 in HNSCC
Michal Kidacki, Heather I. Lehman, Michelle V. Green, Joshua I. Warrick, and Douglas B. Stairs
Molecular Effects of Stromal-Selective Targeting by uPAR-Retargeted Oncolytic Virus in Breast Cancer
Yuqi Jing, Valery Chavez, Yuguang Ban, Nicolas Acquavella, Doraya El-Ashry, Alexey Pronin, Xi Chen, and Jaime R. Merchan

Inhibition of Ciliogenesis Promotes Hedgehog Signaling, Tumorigenesis, and Metastasis in Breast Cancer
Nadia B. Hassounah, Martha Nunez, Colleen Fordyce, Denise Roe, Ray Nagle, Thomas Bunch, and Kimberly M. McDermott

BRAF-inhibitor Associated MEK Mutations Increase RAF-Dependent and -Independent Enzymatic Activity
Caroline M. Emery, Kelli-Ann Monaco, Ping Wang, Marissa Balak, Alyson Freeman, Jodi Meltzer, Scott M. Delach, Daniel Rakier, David A. Ruddy, Joshua M. Korn, Jacob Halting, Michael G. Acker, and Giordano Caponigro

EGFR Downregulation after Anti-EGFR Therapy Predicts the Antitumor Effect in Colorectal Cancer
Yasuyuki Okada, Tetsuo Kimura, Tadahiko Nakagawa, Koichi Okamoto, Akira Fukuya, Takahiro Goji, Shota Fujimoto, Masahiro Sogabe, Hiroshi Miyamoto, Naoki Muguruma, Yasushi Tsuji, Toshiya Okahisa, and Tetsuji Takayama

The Tissue-Reconstructing Ability of Colon CSCs Is Enhanced by FK506 and Suppressed by GSK3 Inhibition
Ryo Ishida, Michiyoko Koyanagi-Aoi, Nobu Oshima, Yoshihiro Kakeji, and Takashi Aoi

ABOUT THE COVER
Most vertebrate cells contain immotile microtubule-based organelles known as primary cilia. Previous study has suggested the importance of Hedgehog signaling to ciliogenesis, and that inhibition of this process promotes more aggressive disease phenotypes. Here, genetically engineered mouse models were used to define the role of Hedgehog signaling in the context of inhibition of ciliogenesis. The cover displays immunofluorescent images of mammary tissue from the Ift88^{fl/fl}/PyMT⁺ transgenic mouse model. Ift88^{fl/fl} is required for intraflagellar transport and loss has been shown to inhibit ciliogenesis. The left image is immunostained for a myoepithelial marker (CK5, white) and nuclei (Hoechst, blue), the upper middle image is immunostained for the cilia marker (ARL13b red) and centrosome marker (g-tubulin, green), and the lower image is a merged image. The larger center image is an artistic rendering of the merged image. Please see the article by Hassounah and colleagues (beginning on page 1421) for more details.
Molecular Cancer Research

15 (10)

| Updated version | Access the most recent version of this article at: http://mcr.aacrjournals.org/content/15/10 |

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.