Highlights of This Issue 1

REVIEW

3 Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics
Andrew Goodspeed, Laura M. Heiser, Joe W. Gray, and James C. Costello

CELL DEATH AND SURVIVAL

14 Depleting Tumor-NQO1 Potentiates Anoikis and Inhibits Growth of NSCLC
Brian Madajewski, Michael A. Boatman, Gaurab Chakrabarti, David A. Boothman, and Erik A. Bey

CHROMATIN, EPIGENETICS, AND RNA REGULATION

26 Promoter Methylation Analysis Reveals That KCNA5 Ion Channel Silencing Supports Ewing Sarcoma Cell Proliferation

35 HDAC Inhibition for the Treatment of Epithelioid Sarcoma: Novel Cross Talk Between Epigenetic Components
Gonzalo Lopez, Yechun Song, Ryan Lam, Dennis Ruder, Chad J. Creighton, Hemant Kumar Bid, Kate Lynn Bill, Svetlana Bolshakov, Xiaoli Zhang, Dina Lev, and Raphael E. Pollock

DNA DAMAGE AND REPAIR

44 RAD51 and BRCA2 Enhance Oncolytic Adenovirus Type 5 Activity in Ovarian Cancer
Laura A. Tookman, Ashley K. Browne, Claire M. Connell, Gemma Bridge, Carin K. Ingemarsdotter, Suzanne Dowson, Atsushi Shibata, Michelle Lockley, Sarah A. Martin, and Iain A. McNeish

ONCOGENES AND TUMOR SUPPRESSORS

56 p53 Activity Dominates That of p73 upon Mdm4 Loss in Development and Tumorigenesis
Mehroosh Tashkori, Yun Zhang, Shunbin Xiong, M. James You, and Guillermina Lozano

66 p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb
Stuti Agarwal, Catherine M. Bell, Shirley M. Taylor, and Richard G. Moran

78 Increased Expression of Beige/Brown Adipose Markers from Host and Breast Cancer Cells Influence Xenograft Formation in Mice
Rajan Singh, Meher Parveen, John M. Basgen, Sayeda Fazel, Meron F. Meshesha, Easter C. Tahmes, Brandis Moore, Luis Martinez, Carolyn B. Howard, Laurent Vergnes, Karen Reue, and Shehla Pervin

SIGNAL TRANSDUCTION

93 The CBM Complex Underwrites NF-κB Activation to Promote HER2-Associated Tumor Malignancy
Deng Pan, Yifan Zhu, Zhicheng Zhou, Tingting Wang, Harrison You, Changying Jiang, and Xin Lin

103 Tumor Cell-Derived Periostin Regulates Cytokines That Maintain Breast Cancer Stem Cells
Arthur W. Lambert, Chen Khuan Wong, Sait Ozturk, Panagiotis Papageorgis, Rekha Raghunathan, Yuriy Alekseyev, Adam C. Gower, Björn M. Reinhard, Hamid M. Abdolmaleky, and Sam Thiagalingam

114 Sonic Hedgehog Signaling Drives Mitochondrial Fragmentation by Suppressing Mitofusins in Cerebellar Granule Neuron Precursors and Medulloblastoma
Anshu Malhotra, Abhinav Dey, Niayath Prasad, and Anna Marie Kenney

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org
ABOUT THE COVER

The development of the normal murine embryonic brain (left column) requires Mdm4 as Mdm4 deficiency results in a porencephaly phenotype (middle column) that leads to decreased proliferation (middle row) and increased apoptosis (bottom row). While biochemically Mdm4 has a stronger affinity for p73 than p53, p73 loss does not alter the phenotype (right column) which is completely rescued by p53 deletion. Thus, even though both p53 and p73 are transcriptionally functional at this developmental stage and time point, the porencephaly phenotype is dominated by p53. See the article by Tashakori and colleagues (beginning on page 56) for more information.